Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B.
(2016). Simple online and realtime tracking. In 2016
IEEE International Conference on Image Processing
(ICIP), pages 3464–3468. IEEE.
Bresilla, K., Perulli, G. D., Boini, A., Morandi, B., Grap-
padelli, L. C., and Manfrini, L. (2019). Single-shot
convolution neural networks for real-time fruit detec-
tion within the tree. Frontiers in plant science, 10.
Bulanon, D., Kataoka, T., Ota, Y., and Hiroma, T. (2002).
Aeautomation and emerging technologies: A segmen-
tation algorithm for the automatic recognition of fuji
apples at harvest. Biosystems Engineering, 83(4):405
– 412.
Chaivivatrakul, S. and Dailey, M. N. (2014). Texture-based
fruit detection. Precision Agriculture, 15(6):662–683.
Gongal, A., Amatya, S., Karkee, M., Zhang, Q., and Lewis,
K. (2015). Sensors and systems for fruit detection and
localization: A review. Computers and Electronics in
Agriculture, 116:8 – 19.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Hussain, I., He, Q., and Chen, Z. Automatic fruit recogni-
tion based on dcnn for commercial source trace sys-
tem.
Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems. Journal of basic Engineer-
ing, 82(1):35–45.
Kamilaris, A. and Prenafeta-Bold, F. X. (2018). Deep learn-
ing in agriculture: A survey. Computers and Electron-
ics in Agriculture, 147:70 – 90.
Li, P., heon Lee, S., and Hsu, H.-Y. (2011). Review on fruit
harvesting method for potential use of automatic fruit
harvesting systems. Procedia Engineering, 23:351 –
366. PEEA 2011.
Lin, T.-Y., Doll
´
ar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2017). Feature pyramid networks
for object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2117–2125.
Lobell, D. B., Thau, D., Seifert, C., Engle, E., and Little, B.
(2015). A scalable satellite-based crop yield mapper.
Remote Sensing of Environment, 164:324 – 333.
Mures¸an, H. and Oltean, M. (2018). Fruit recognition from
images using deep learning. Acta Universitatis Sapi-
entiae, Informatica, 10(1):26–42.
Rakun, J., Stajnko, D., and Zazula, D. (2011). Detect-
ing fruits in natural scenes by using spatial-frequency
based texture analysis and multiview geometry. Com-
puters and Electronics in Agriculture, 76(1):80 – 88.
Redmon, J. and Farhadi, A. (2017). YOLO9000: better,
faster, stronger. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, pages 6517–
6525.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems, pages 91–99.
Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster r-
cnn: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6):1137–1149.
Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., and Mc-
Cool, C. (2016). Deepfruits: A fruit detection system
using deep neural networks. Sensors, 16(8).
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
ˇ
Skrjanec Marko (2013). Automatic fruit recognition using
computer vision. (Mentor: Matej Kristan), Fakulteta
za ra
ˇ
cunalni
ˇ
stvo in informatiko, Univerza v Ljubljani.
Wojke, N., Bewley, A., and Paulus, D. (2017). Simple on-
line and realtime tracking with a deep association met-
ric. In 2017 IEEE International Conference on Image
Processing (ICIP), pages 3645–3649. IEEE.
Woo Chaw Seng and Mirisaee, S. H. (2009). A new method
for fruits recognition system. In 2009 International
Conference on Electrical Engineering and Informat-
ics, volume 01, pages 130–134.
Yamamoto, K., Guo, W., Yoshioka, Y., and Ninomiya, S.
(2014). On plant detection of intact tomato fruits using
image analysis and machine learning methods. Sen-
sors, 14(7):12191–12206.
Zhang, Y., Wang, S., Ji, G., and Phillips, P. (2014).
Fruit classification using computer vision and feedfor-
ward neural network. Journal of Food Engineering,
143:167 – 177.
Zheng, L., Bie, Z., Sun, Y., Wang, J., Su, C., Wang, S., and
Tian, Q. (2016). Mars: A video benchmark for large-
scale person re-identification. In European Confer-
ence on Computer Vision, pages 868–884. Springer.
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
766