Delorme, A., Palmer, J., Onton, J., Oostenveld, R., &
Makeig, S. (2012). Independent EEG sources are
dipolar. PLoS ONE, 7(2).
https://doi.org/10.1371/journal.pone.0030135
Dick, O. E., & Svyatogor, I. A. (2012). Potentialities of
the wavelet and multifractal techniques to evaluate
changes in the functional state of the human brain.
Neurocomputing, 82, 207–215.
https://doi.org/10.1016/j.neucom.2011.11.013
Dick, O. E., Svyatogor, I. A., Ishinova, V. A., &
Nozdrachev, A. D. (2012). Fractal characteristics of
the functional state of the brain in patients with
anxiuos phobic disorders. Human Physiology, 38(3),
249–254.
https://doi.org/10.1134/S036211971202003X
Dutta, S., Ghosh, D., Samanta, S., & Dey, S. (2014).
Multifractal parameters as an indication of different
physiological and pathological states of the human
brain. Physica A: Statistical Mechanics and Its
Applications, 396, 155–163.
https://doi.org/10.1016/j.physa.2013.11.014
Easwaramoorthy, D., & Uthayakumar, R. (2010). Analysis
of biomedical EEG signals using Wavelet Transforms
and Multifractal Analysis. Communication Control
and Computing Technologies (ICCCCT), 2010 IEEE
International Conference On.
https://doi.org/10.1109/ICCCCT.2010.5670780
Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002).
Fractal characterization of complexity in temporal
physiological signals. Physiological Measurement,
23(1). https://doi.org/10.1088/0967-3334/23/1/201
Figliola, A., Serrano, E., & Rosso, O. A. (2007).
Multifractal detrented fluctuation analysis of tonic-
clonic epileptic seizures. 123, 117–123.
https://doi.org/10.1140/epjst/e2007-00079-9
Ghaderi, A. H., Moradkhani, S., Haghighatfard, A.,
Akrami, F., Khayyer, Z., & Balcı, F. (2018). Time
estimation and beta segregation: An EEG study and
graph theoretical approach. PLoS ONE, 13(4), 1–16.
https://doi.org/10.1371/journal.pone.0195380
Goldberger, A. L., Amaral, L. A. N., Hausdorff, J. M.,
Ivanov, P. C., Peng, C.-K., & Stanley, H. E. (2002).
Fractal dynamics in physiology: Alterations with
disease and aging. Proceedings of the National
Academy of Sciences, 99(Supplement 1), 2466–2472.
https://doi.org/10.1073/pnas.012579499
Ihlen, E. A. F. (2012). Introduction to multifractal
detrended fluctuation analysis in Matlab. Frontiers in
Physiology, 3 JUN(June), 1–18.
https://doi.org/10.3389/fphys.2012.00141
Kantelhardt, J. W., Zschiegner, S. a., Koscielny-Bunde, E.,
Havlin, S., Bunde, A., Stanley, H. E., … Stanley, H. E.
(2002). Multifractal detrended fluctuation analysis of
nonstationary time series. Physica A: Statistical
Mechanics and Its Applications, 316(1), 87–114.
https://doi.org/10.1016/S0378-4371(02)01383-3
Khoshnoud, S., Nazari, M. A., & Shamsi, M. (2018).
Functional brain dynamic analysis of ADHD and
control children using nonlinear dynamical features of
EEG signals. Journal of Integrative Neuroscience,
17(1), 17–30. https://doi.org/10.3233/JIN-170033
Khoshnoud, S., Shamsi, M., Nazari, M. A., & Makeig, S.
(2017). Different cortical source activation patterns in
children with attention deficit hyperactivity disorder
during a time reproduction task. Journal of Clinical
and Experimental Neuropsychology, 40(7), 633–649.
https://doi.org/10.1080/13803395.2017.1406897
Kononowicz, T. W., & Rijn, H. van. (2015). Single trial
beta oscillations index time estimation.
Neuropsychologia, 75, 381–389.
https://doi.org/10.1016/j.neuropsychologia.2015.06.01
4
Ma, Q., Ning, X., Wang, J., & Bian, C. (2006). A new
measure to characterize multifractality of sleep
electroencephalogram. Chinese Science Bulletin,
51(24), 3059–3064. https://doi.org/10.1007/s11434-
006-2213-y
Maity, A. K., Pratihar, R., Mitra, A., Dey, S., Agrawal, V.,
Sanyal, S., … Ghosh, D. (2015). Multifractal
Detrended Fluctuation Analysis of alpha and theta
EEG rhythms with musical stimuli. Chaos, Solitons
and Fractals, 81, 52–67.
https://doi.org/10.1016/j.chaos.2015.08.016
Makeig, S., Bell, A. J., Jung, T.-P., & Sejnowski, T. J.
(1996). Independent component analysis of
electroencephalographic data. Advances in Neural
Information Processing Systems, 145–151.
Makeig, S., Westerfield, M., Jung, T.-P., Enghoff, S.,
Townsend, J., Courchesne, E., & Sejnowski, T. J.
(2002). Dynamic Brain Sources Visual Evoked
Response. Science, 295(January), 690–694.
Natarajan, K., Acharya U, R., Alias, F., Tiboleng, T., &
Puthusserypady, S. K. (2004). Nonlinear analysis of
EEG signals at different mental states. Biomedical
Engineering Online, 3(1), 7.
https://doi.org/10.1186/1475-925X-3-7
Noreika, V., Falter, C. M., & Rubia, K. (2013). Timing
deficits in attention-deficit/hyperactivity disorder
(ADHD): Evidence from neurocognitive and
neuroimaging studies. Neuropsychologia, 51(2), 235–
266. https://doi.org/10.1016/j.neuropsychologia.
2012.09.036
Onton, J., & Makeig, S. (2006). Chapter 7 Information-
based modeling of event-related brain dynamics.
Progress in Brain Research,
159, 99–120.
https://doi.org/10.1016/S0079-6123(06)59007-7
Palmer, J. A., Kreutz-Delgado, K., & Makeig, S. (2006).
Super-Gaussian mixture source model for ICA.
Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 3889 LNCS, 854–
861. https://doi.org/10.1007/11679363_106
Palmer, J. A., Kreutz-Delgado, K., & Makeig, S. (2011).
AMICA: An adaptive mixture of independent
component analyzers with shared components. San
Diego, CA: Technical report, Swartz Center for
Computational Neuroscience.
Palmer, J. A., Makeig, S., Kreutz-Delgado, K., & Rao, B.
D. (2008). Newton method for the ICA mixture model.