which the densities are summed from 1 second to 100
or 200 milliseconds, this problem should disappear.
However, the calculation time should be increased.
REFERENCES
Alon, J., Athitsos, V., Yuan, Q., and Sclaroff, S. (2008).
A unified framework for gesture recognition and spa-
tiotemporal gesture segmentation. IEEE transac-
tions on pattern analysis and machine intelligence,
31(9):1685–1699.
B
´
enar, C.-G., Chauvi
`
ere, L., Bartolomei, F., and Wendling,
F. (2010). Pitfalls of high-pass filtering for detecting
epileptic oscillations: a technical note on false ripples.
Clinical Neurophysiology, 121(3):301–310.
Birot, G., Kachenoura, A., Albera, L., B
´
enar, C., and
Wendling, F. (2013). Automatic detection of fast rip-
ples. Journal of neuroscience methods, 213(2):236–
249.
Blinowska, K. and Durka, P. (2006). Electroencephalogra-
phy (eeg). Wiley Encyclopedia of Biomedical Engi-
neering.
Bragin, A., Engel Jr, J., Wilson, C. L., Fried, I., and
Buzs
´
aki, G. (1999a). High-frequency oscillations in
human brain. Hippocampus, 9(2):137–142.
Bragin, A., Engel Jr, J., Wilson, C. L., Fried, I., and Math-
ern, G. W. (1999b). Hippocampal and entorhinal cor-
tex high-frequency oscillations (100–500 hz) in hu-
man epileptic brain and in kainic acid-treated rats with
chronic seizures. Epilepsia, 40(2):127–137.
Bragin, A., Mody, I., Wilson, C. L., and Engel, J. (2002).
Local generation of fast ripples in epileptic brain.
Journal of Neuroscience, 22(5):2012–2021.
Chadwick, N. A., McMeekin, D. A., and Tan, T. (2011).
Classifying eye and head movement artifacts in eeg
signals. In 5th IEEE International Conference on Dig-
ital Ecosystems and Technologies (IEEE DEST 2011),
pages 285–291. IEEE.
De Curtis, M. and Avanzini, G. (2001). Interictal spikes
in focal epileptogenesis. Progress in neurobiology,
63(5):541–567.
Despouy, E., Curot, J., Denuelle, M., Deudon, M., Sol, J.-
C., Lotterie, J.-A., Reddy, L., Nowak, L. G., Pariente,
J., Thorpe, S. J., et al. (2019). Neuronal spiking activ-
ity highlights a gradient of epileptogenicity in human
tuberous sclerosis lesions. Clinical Neurophysiology,
130(4):537–547.
Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and
Keogh, E. (2008). Querying and mining of time series
data: experimental comparison of representations and
distance measures. Proceedings of the VLDB Endow-
ment, 1(2):1542–1552.
Fisher, R. S., Boas, W. V. E., Blume, W., Elger, C., Genton,
P., Lee, P., and Engel Jr, J. (2005). Epileptic seizures
and epilepsy: definitions proposed by the international
league against epilepsy (ilae) and the international bu-
reau for epilepsy (ibe). Epilepsia, 46(4):470–472.
Frauscher, B., Bartolomei, F., Kobayashi, K., Cimbalnik, J.,
van t Klooster, M. A., Rampp, S., Otsubo, H., H
¨
oller,
Y., Wu, J. Y., Asano, E., et al. (2017). High-frequency
oscillations: the state of clinical research. Epilepsia,
58(8):1316–1329.
Gotman, J. (1999). Automatic detection of seizures
and spikes. Journal of Clinical Neurophysiology,
16(2):130–140. Gotman, J. and Gloor, P. (1976). Au-
tomatic recognition and quantification of interictal
epileptic activity in the human scalp eeg. Elec-
troencephalography and clinical neurophysiology,
41(5):513–529.
Hao, M. C., Dayal, U., Keim, D. A., and Schreck, T. (2007).
Multi-resolution techniques for visual exploration of
large time-series data. In EUROVIS 2007, pages 27–
34.
H
¨
oller, Y., Kutil, R., Klaffenb
¨
ock, L., Thomschewski, A.,
H
¨
oller, P. M., Bathke, A. C., Jacobs, J., Taylor, A. C.,
Nardone, R., and Trinka, E. (2015). High-frequency
oscillations in epilepsy and surgical outcome. a meta-
analysis. Frontiers in human neuroscience, 9:574.
Ibarz, J. M., Foffani, G., Cid, E., Inostroza, M., and de la
Prida, L. M. (2010). Emergent dynamics of fast rip-
ples in the epileptic hippocampus. Journal of Neuro-
science, 30(48):16249–16261.
Javed, W. and Elmqvist, N. (2010). Stack zooming for
multi-focus interaction in time-series data visualiza-
tion. In 2010 IEEE Pacific Visualization Symposium
(PacificVis), pages 33–40. IEEE. Javed, W., McDon-
nel, B., and Elmqvist, N. (2010). Graphical perception
of multiple time series. IEEE transactions on visual-
ization and computer graphics, 16(6):927–934.
Jing, J., Dauwels, J., Rakthanmanon, T., Keogh, E., Cash,
S., and Westover, M. (2016). Rapid annotation of in-
terictal epileptiform discharges via template matching
under dynamic time warping. Journal of neuroscience
methods, 274:179–190.
Jrad, N., Kachenoura, A., Merlet, I., Bartolomei, F., Nica,
A., Biraben, A., and Wendling, F. (2016). Automatic
detection and classification of high-frequency oscil-
lations in depth-eeg signals. IEEE Transactions on
Biomedical Engineering, 64(9):2230–2240.
Keogh, E., Wei, L., Xi, X., Vlachos, M., Lee, S.-H., and
Protopapas, P. (2009). Supporting exact indexing of
arbitrarily rotated shapes and periodic time series un-
der euclidean and warping distance measures. The
VLDB journal, 18(3):611–630.
Kincaid, R. and Lam, H. (2006). Line graph explorer: scal-
able display of line graphs using focus+ context. In
Proceedings of the working conference on Advanced
visual interfaces, pages 404–411. ACM.
Latka, M., Was, Z., Kozik, A., and West, B. J. (2003).
Wavelet analysis of epileptic spikes. Physical Review
E, 67(5):052902.
Lin, J., Keogh, E., Lonardi, S., Lankford, J. P., and Nys-
trom, D. M. (2004). Visually mining and monitoring
massive time series. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 460–469. ACM.
Rakthanmanon, T., Campana, B., Mueen, A., Batista, G.,
Westover, B., Zhu, Q., Zakaria, J., and Keogh, E.
HUCAPP 2020 - 4th International Conference on Human Computer Interaction Theory and Applications
108