Cornell University Library. http://arxiv.org/abs/1702.
01105.
Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I.,
Fischer, M., and Savarese, S. (2016). 3D semantic
parsing of large-scale indoor spaces. In Proceedings
of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, June 26 - July 1,
pages 1534–1543, Piscataway, NJ. IEEE.
Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
(2009). Curriculum learning. In Proceedings of the
26th Annual International Conference on Machine
Learning, ICML, pages 41–48, New York, NY, USA.
ACM.
Canny, J. (1986). A computational approach to edge de-
tection. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 8(6):679–698.
Chang, A. X., Dai, A., Funkhouser, T. A., Halber, M.,
Nießner, M., Savva, M., Song, S., Zeng, A., and
Zhang, Y. (2017). Matterport3D: Learning from RGB-
D data in indoor environments. Technical Report
arXiv:1709.06158, Cornell University Library. http:
//arxiv.org/abs/1709.06158.
Charles, R. Q., Su, H., Kaichun, M., and Guibas, L. J.
(2017). PointNet: Deep learning on point sets for
3D classification and segmentation. In Proceedings
of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, Hawaii, July 21-26,
pages 77–85, Piscataway, NJ. IEEE.
Csurka, G. (2017). A comprehensive survey on domain
adaptation for visual applications. In Csurka, G., ed-
itor, Domain Adaptation in Computer Vision Applica-
tions, pages 1–35. Springer International Publishing,
Cham.
Dai, A., Ritchie, D., Bokeloh, M., Reed, S., Sturm, J.,
and Niessner, M. (2018). ScanComplete: Large-Scale
Scene Completion and Semantic Segmentation for 3D
Scans. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Salt
Lake City, UT, June 18-22, pages 4578–4587, Piscat-
away, NJ. IEEE.
Dourado, A., de Campos, T. E., Kim, H., and Hilton, A.
(2019). EdgeNet: Semantic scene completion from
RGB-D images. Technical Report arXiv:1908.02893,
Cornell University Library. http://arxiv.org/abs/1908.
02893.
Firman, M., Aodha, O. M., Julier, S., and Brostow, G. J.
(2016). Structured prediction of unobserved voxels
from a single depth image. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), Las Vegas, NV, June 26 - July 1, pages
5431–5440, Piscataway, NJ. IEEE.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun. ACM, 24(6):381–395.
Garbade, M., Sawatzky, J., Richard, A., and Gall, J. (2018).
Two stream 3D semantic scene completion. Technical
Report arXiv:1804.03550, Cornell University Library.
http://arxiv.org/abs/1804.03550.
Guedes, A. B. S., de Campos, T. E., and Hilton, A. (2017).
Semantic scene completion combining colour and
depth: preliminary experiments. In ICCV workshop
on 3D Reconstruction Meets Semantics (3DRMS),
Venice, Italy. Event webpage: http://trimbot2020.
webhosting.rug.nl/events/events-2017/3drms/. Also
published at arXiv:1802.04735.
Guo, R., Zou, C., and Hoiem, D. (2015). Predicting com-
plete 3D models of indoor scenes. Technical Report
arXiv:1504.02437, Cornell University Library. http:
//arxiv.org/abs/1504.02437.
Guo, Y. and Tong, X. (2018). View-Volume Network for
Semantic Scene Completion from a Single Depth Im-
age. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence,
pages 726–732, Stockholm, Sweden. International
Joint Conferences on Artificial Intelligence Organiza-
tion.
Gupta, A., Efros, A. A., and Hebert, M. (2010). Blocks
world revisited: Image understanding using qual-
itative geometry and mechanics. In Proceedings
of 11th European Conference on Computer Vision
(ECCV), Crete, Greece, September 5-11, pages 482–
496, Berlin, Heidelberg. Springer Berlin Heidelberg.
Gupta, S., Arbel
´
aez, P., and Malik, J. (2013). Perceptual
organization and recognition of indoor scenes from
rgb-d images. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
Portland, OR, June 23-28, pages 564–571, Piscat-
away, NJ. IEEE.
Handa, A., Patraucean, V., Badrinarayanan, V., Stent, S.,
and Cipolla, R. (2015). SceneNet: Understanding real
world indoor scenes with synthetic data. Technical
Report arXiv:1511.07041, Cornell University Library.
http://arxiv.org/abs/1511.07041.
Kim, H. and Hilton, A. (2013). 3D scene reconstruction
from multiple spherical stereo pairs. Int Journal of
Computer Vision (IJCV), 104(1):94–116.
Kim, H. and Hilton, A. (2015). Block world reconstruction
from spherical stereo image pairs. Computer Vision
and Image Understanding (CVIU), 139(C):104–121.
Kim, H., Remaggi, L., Jackson, P. J., and Hilton, A. (2019).
Immersive spatial audio reproduction for VR/AR us-
ing room acoustic modelling from 360 images. In Pro-
ceedings of 26th IEEE Conference on Virtual Real-
ity and 3D User Interfaces, Osaka Japan, Piscataway,
NJ. IEEE.
Kittler, J., Hatef, M., Duin, R. P. W., and Matas, J. (1998).
On combining classifiers. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI),
20(3):226–239.
Li, S. (2006). Real-time spherical stereo. In Proceedings
of International Conference on Pattern Recognition
(ICPR), pages 1046–1049, Piscataway, NJ. IEEE.
Liu, F., Li, S., Zhang, L., Zhou, C., Ye, R., Wang, Y.,
and Lu, J. (2017). 3DCNN-DQN-RNN: A deep re-
inforcement learning framework for semantic pars-
ing of large-scale 3D point clouds. In Proceedings
of 16th International Conference on Computer Vision
(ICCV), Venice, Italy, pages 5679–5688, Piscataway,
NJ. IEEE.
Liu, S., HU, Y., Zeng, Y., Tang, Q., Jin, B., Han, Y.,
and Li, X. (2018). See and think: Disentangling se-
mantic scene completion. In Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
Semantic Scene Completion from a Single 360-Degree Image and Depth Map
45