REFERENCES
Belge, M. and Miller, E. (2000). A sliding window RLS-
like adaptive algorithm for filtering alpha-stable noise.
IEEE Signal Processing Letters, 7(4):86–89.
Brown, G., Pocock, A., Zhao, M.-J., and Lujan, M. (2012).
Conditional Likelihood Maximisation: A Unifying
Framework for Information Theoretic Feature Selec-
tion. The Journal of Machine Learning Research, Vol-
ume 13, 3/1/2012:Pages 27–66.
Gibbs, P. and Asada, H. (2005). Reducing motion arti-
fact in wearable biosensors using mems accelerom-
eters for active noise cancellation. In Proceedings of
the 2005, American Control Conference, 2005., pages
1581–1586, Portland, OR, USA. IEEE.
Gil, E., Orini, M., Bailn, R., Vergara, J. M., Mainardi,
L., and Laguna, P. (2010). Photoplethysmography
pulse rate variability as a surrogate measurement of
heart rate variability during non-stationary conditions.
Physiological Measurement, 31(9):1271–1290.
Golyandina, N., Nekrutkin, V. V., and Zhigliavski, A. A.
(2001). Analysis of time series structure: SSA and re-
lated techniques. Number 90 in Monographs on statis-
tics and applied probability. Chapman & Hall/CRC,
Boca Raton, Fla.
Hu, S., Azorin-Peris, V., and Zheng, J. (2013). Opto-
Physiological Modeling Applied to Photoplethys-
mographic Cardiovascular Assessment. Journal of
Healthcare Engineering, 4(4):505–528.
Islam, M. T., Ahmed, S. T., Shahnaz, C., and Fattah, S. A.
(2019). SPECMAR: Fast Heart Rate Estimation from
PPG Signal using a Modified Spectral Subtraction
Scheme with Composite Motion Artifacts Reference
Generation. Medical & Biological Engineering &
Computing, 57(3):689–702. arXiv: 1810.06196.
Jan, H.-Y., Chen, M.-F., Fu, T.-C., Lin, W.-C., Tsai, C.-
L., and Lin, K.-P. (2019). Evaluation of Coherence
Between ECG and PPG Derived Parameters on Heart
Rate Variability and Respiration in Healthy Volunteers
With/Without Controlled Breathing. Journal of Medi-
cal and Biological Engineering.
Khan, E., Al Hossain, F., Uddin, S. Z., Alam, S. K., and
Hasan, M. K. (2016). A Robust Heart Rate Moni-
toring Scheme Using Photoplethysmographic Signals
Corrupted by Intense Motion Artifacts. IEEE Trans-
actions on Biomedical Engineering, 63(3):550–562.
Lee, B., Han, J., Baek, H. J., Shin, J. H., Park, K. S., and Yi,
W. J. (2010). Improved elimination of motion artifacts
from a photoplethysmographic signal using a Kalman
smoother with simultaneous accelerometry. Physio-
logical Measurement, 31(12):1585–1603.
Maeda, Y., Sekine, M., and Tamura, T. (2011). Relationship
Between Measurement Site and Motion Artifacts in
Wearable Reflected Photoplethysmography. Journal
of Medical Systems, 35(5):969–976.
Ram, M. R., Madhav, K. V., Krishna, E. H., Komalla, N. R.,
and Reddy, K. A. (2012). A Novel Approach for Mo-
tion Artifact Reduction in PPG Signals Based on AS-
LMS Adaptive Filter. IEEE Transactions on Instru-
mentation and Measurement, 61(5):1445–1457.
Sayed, A. H. (2003). Fundamentals of adaptive filtering.
IEEE Press Wiley-Interscience, New York. OCLC:
ocm52287219.
Tautan, A.-M., Young, A., Wentink, E., and Wieringa, F.
(2015). Characterization and reduction of motion ar-
tifacts in photoplethysmographic signals from a wrist-
worn device. In 2015 37th Annual International Con-
ference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pages 6146–6149, Milan.
IEEE.
Vaseghi, S. V. (2001). Advanced digital signal process-
ing and noise reduction. Wiley, Chichester. OCLC:
937216619.
Zhang, Y., Song, S., Vullings, R., Biswas, D., Simes-
Capela, N., van Helleputte, N., van Hoof, C., and
Groenendaal, W. (2019). Motion Artifact Reduction
for Wrist-Worn Photoplethysmograph Sensors Based
on Different Wavelengths. Sensors, 19(3):673.
BIODEVICES 2020 - 13th International Conference on Biomedical Electronics and Devices
32