Blender Online Community. Blender a 3d modelling pack-
age.
Chollet, F. (2016). Xception: Deep learning with depthwise
separable convolutions. cite arxiv:1610.02357.
Doll
´
ar, P. Piotr’s Computer Vision Matlab Toolbox (PMT).
https://github.com/pdollar/toolbox.
GESDPD (2019). The GEINTRA Synthetic Depth Peo-
ple Detection (GESDPD) database. Available on-
line http://www.geintra-uah.org/datasets/gesdpd. (ac-
cessed July 2019).
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167.
Jeong, C. Y., Choi, S., and Han, S. W. (2013). A method
for counting moving and stationary people by interest
point classification. In Image Processing (ICIP), 2013
20th IEEE International Conference on, pages 4545–
4548.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Lange, R. and Seitz, P. (2001). Solid-state time-of-flight
range camera. Quantum Electronics, IEEE Journal
of, 37(3):390–397.
Luna, C. A., Losada-Gutierrez, C., Fuentes-Jimenez,
D., Fernandez-Rincon, A., Mazo, M., and Macias-
Guarasa, J. (2017). Robust people detection using
depth information from an overhead time-of-flight
camera. Expert Systems with Applications, 71:240–
256.
Microsoft (2014). Kinect for windows sdk 2.0.
Munaro, M. and Menegatti, E. (2014). Fast rgb-d people
tracking for service robots. Auton. Robots, 37(3):227–
242.
Ramanan, D., Forsyth, D. A., and Zisserman, A. (2006).
Tracking People by Learning Their Appearance. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 29(1):65–81.
Roosendaal, T., Hess, R., and Foundation, B. (2007). The
Essential Blender: Guide to 3D Creation with the
Open Source Suite Blender. No Starch Press Series.
No Starch Press.
Sell, J. and O’Connor, P. (2014). The Xbox one system on
a chip and Kinect sensor. Micro, IEEE, 34(2):44–53.
Stahlschmidt, C., Gavriilidis, A., Velten, J., and Kummert,
A. (2013). People detection and tracking from a
top-view position using a time-of-flight camera. In
Dziech, A. and Czyazwski, A., editors, Multimedia
Communications, Services and Security, volume 368
of Communications in Computer and Information Sci-
ence, pages 213–223. Springer Berlin Heidelberg.
Wang, C. and Zhao, Y. (2017). Multi-layer proposal net-
work for people counting in crowded scene. In Intel-
ligent Computation Technology and Automation (ICI-
CTA), 2017 10th International Conference on, pages
148–151. IEEE.
Zhang, X., Yan, J., Feng, S., Lei, Z., Yi, D., and Li, S.
(2012). Water filling: Unsupervised people counting
via vertical Kinect sensor. In Advanced Video and
Signal-Based Surveillance (AVSS), 2012 IEEE Ninth
International Conference on, pages 215–220.
Zhao, J., Zhang, G., Tian, L., and Chen, Y. Q. (2017). Real-
time human detection with depth camera via a phys-
ical radius-depth detector and a cnn descriptor. In
2017 IEEE International Conference on Multimedia
and Expo (ICME), pages 1536–1541.
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
232