Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013).
Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–
1237.
Handa, A., Whelan, T., McDonald, J., and Davison, A. J.
(2014). A benchmark for rgb-d visual odometry, 3d
reconstruction and slam. In 2014 IEEE international
conference on Robotics and automation (ICRA), pages
1524–1531. IEEE.
Hartley, R. and Zisserman, A. (2003). Multiple view geom-
etry in computer vision. Cambridge university press.
Huang, S. and Dissanayake, G. (2016). A critique of current
developments in simultaneous localization and map-
ping. International Journal of Advanced Robotic Sys-
tems, 13(5):1729881416669482.
Huletski, A., Kartashov, D., and Krinkin, K. (2015). Eval-
uation of the modern visual slam methods. In 2015
Artificial Intelligence and Natural Language and In-
formation Extraction, Social Media and Web Search
FRUCT Conference (AINL-ISMW FRUCT), pages 19–
25. IEEE.
Kalisz, A., Particke, F., Penk, D., Hiller, M., and Thielecke,
J. (2019). B-slam-sim: A novel approach to evaluate
the fusion of visual slam and gps by example of direct
sparse odometry and blender. In VISIGRAPP.
Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M.,
Grisetti, G., Stachniss, C., and Kleiner, A. (2009).
On measuring the accuracy of slam algorithms. Au-
tonomous Robots, 27(4):387.
Li, A. Q., Coskun, A., Doherty, S. M., Ghasemlou, S., Jag-
tap, A. S., Modasshir, M., Rahman, S., Singh, A.,
Xanthidis, M., O’Kane, J. M., et al. (2016). Exper-
imental comparison of open source vision-based state
estimation algorithms. In International Symposium on
Experimental Robotics, pages 775–786. Springer.
Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015).
Orb-slam: a versatile and accurate monocular slam
system. IEEE transactions on robotics, 31(5):1147–
1163.
Mur-Artal, R. and Tardós, J. D. (2017). Orb-slam2:
An open-source slam system for monocular, stereo,
and rgb-d cameras. IEEE Transactions on Robotics,
33(5):1255–1262.
Particke, F., Kalisz, A., Hofmann, C., Hiller, M., Bey, H.,
and Thielecke, J. (2018). Systematic analysis of di-
rect sparse odometry. In 2018 Digital Image Com-
puting: Techniques and Applications (DICTA), pages
1–6. IEEE.
Schleicher, D., Bergasa, L. M., Ocana, M., Barea, R., and
Lopez, M. E. (2009). Real-time hierarchical outdoor
slam based on stereovision and gps fusion. IEEE
Transactions on Intelligent Transportation Systems,
10(3):440–452.
Shi, Y., Ji, S., Shi, Z., Duan, Y., and Shibasaki, R. (2013).
Gps-supported visual slam with a rigorous sensor
model for a panoramic camera in outdoor environ-
ments. Sensors, 13(1):119–136.
Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cre-
mers, D. (2012). A benchmark for the evaluation of
rgb-d slam systems. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
573–580. IEEE.
Taketomi, T., Uchiyama, H., and Ikeda, S. (2017). Visual
slam algorithms: A survey from 2010 to 2016. IPSJ
Transactions on Computer Vision and Applications,
9(1):16.
Tareen, S. A. K. and Saleem, Z. (2018). A comparative anal-
ysis of sift, surf, kaze, akaze, orb, and brisk. In 2018
International Conference on Computing, Mathemat-
ics and Engineering Technologies (iCoMET), pages
1–10. IEEE.
Yang, N., Wang, R., Gao, X., and Cremers, D. (2018).
Challenges in monocular visual odometry: Photomet-
ric calibration, motion bias, and rolling shutter effect.
IEEE Robotics and Automation Letters, 3(4):2878–
2885.
Younes, G., Asmar, D., Shammas, E., and Zelek, J. (2017).
Keyframe-based monocular slam: design, survey, and
future directions. Robotics and Autonomous Systems,
98:67–88.
Zhang, Z. and Scaramuzza, D. (2018). A tutorial on quanti-
tative trajectory evaluation for visual (-inertial) odom-
etry. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 7244–
7251. IEEE.
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
180