microscopy for the diagnosis of doubtful melanocytic
skin lesions. comparison of the ABCD rule of
dermatoscopy and a new 7-point checklist based on
pattern analysis. Arch.Dermatol. 134, 1563–1570.
Bi L., Kim J., Ahn E., Feng D., Fulham M, 2016.
Automatic melanoma detection via multiscale lesion-
based representation and joint reverse classification.
13th International Symposium on Biomedical Imaging
(ISBI).
Binder, M., Schwarz, M., Winkler, A., Steiner, A., Kaider,
A., Wolff, K., and Pehamberger, H., 1995.
Epiluminescence Microscopy. A Useful Tool for the
Diagnosis of Pigmented Skin Lesionfor Formally
Trained Dermatologists. Archives of Dermatology, vol.
131, no. 3, pp. 286-291.
Codella, N.C.F., Gutman, D., Celebi, M.E., Helba, B.,
Marchetti, M.A., Dusza, S.W., Kalloo,A., Liopyris,
K., Mishra, N., Kittler, H., Halpern, A., 2017. Skin
Lesion Analysis Toward Melanoma Detection: A
Challenge. The 2017 International Symposium on
Biomedical imaging (ISBI), Hosted by the
International Skin Imaging Collaboration (ISIC). 1-5.
Doi, K., 2005. Current status and future potential of
computer-aided diagnosis in medical imaging. The
British journal of radiology, 78 Spec No 1:S3-S19.
Gu, Y., Jun Z., Bin Q., 2017. Melanoma Detection Based
on Mahalanobis Distance Learning and Con-strained
Graph Regularized Nonnegative Matrix Factorization.
IEEE Winter Conference on Applications of Computer
Vision (WACV), 797-805. Santa Rosa, CA, USA.
Kruk, M., Świderski, B., Osowski, S., Kurek, J.,
Słowińska, M., Walecka, I., 2015. Melanoma
Recognition Using Extended Set of Descriptors and
Classifiers. EURASIP Journal on Image and Video
Processing (43) 2-10.
Ma. Z., Tavares, J. M., 2017. Effective features to classify
skin lesions in dermoscopic images. Expert Syst. Appl.
84: 92-101.
Mendonc, T., Ferreira, P.M., Marques, J. S., 2013. PH2, A
dermoscopic image database for research and
benchmarking. In Annual International Conference of
the IEEE Engineering in Medicine and Biology
Society. 5437–5440.
Menzies, S., Ingvar, C., Crotty, K., McCarthy, W. H.,
1996. Frequency and morphologic characteristics of
invasive melanomas lacking specific surface
microscopic features. Arch. Dermatol. 132,1178–
1182.
Moradi, N., Mahdavi-Amiri, N., 2019. Kernel sparse
representation based model for skin lesions
segmentation and classification. Computer Methods
and Programs in Biomedicine (182).
Nisan, N., Roughgarden., T., Tardos, E. Vazirani, V. V.,
2007. Algorithmic game theory in Cambridge press.
Otsu, N., 1979. A Threshold Selection Method from Gray-
Level Histograms. IEEE Transactions on Systems,
Man, and Cybernetics 9(1) 62-66.
Pennisi, A., Bloisi, D., Nardi, D., et al., 2016. Skin Lesion
Image Segmentation Using Delaunay Triangulation
for Melanoma Detection. Computerized Medical
Imaging and Graphics 52: 89-103.
Sadri A. R, et al. , 2017. WN-based approach to
melanoma diagnosis from dermoscopy images. IET
Image Process; 11(7): 475–82.
She, Z., Liu, Y., Damatoa, A., 2007. Combination of
features from skin pattern and ABCD analysis for
lesion classification. Skin Research & Technology,
13(1), 25–33.
Stoecker, W., Weiling, V., Li, W. and Moss, R., 1992.
Automatic detection of asymmetry in skin tumors.
Computerized Medical Imaging and Graphics, 16,
191–197.
Stolz, W., Riemann, A., Cognetta, A. B., 1994. ABCD
rule of dermatoscopy: a new practical method for early
recognition of malignant melanoma. Eur. J. Dermatol.
4, 521–527.
Roma, P., Savarese, I., Martino, A., Martino, D., Annese,
P., Capoluongo, P., 2007. Slow-growing melanoma:
report of five cases. Journal of Dermatological Case
Reports 1(1): 1-3.
Von Neumann, J., 1928. Zur Theories der
Gesellschaftsspiele. Math. Ann., 100, 295–320.
Wighton, P., Lee, T.K., Lui, H., McLean, D.I., Atkins,
M.S., 2011. Generalizing common tasks in automated
skin lesion diagnosis. IEEE Trans Inf Technol Bio-
med 15 (4), 622–629.
Witten, I.H., Frank, E., 2005. Data mining: practical
machine learning tools and techniques, 2nd ed.
Morgan Kaufmann.