ACKNOWLEDGEMENTS
This work was partially supported by CNPq-
Brazil (grant 311.037/2017-8) and FAPERJ (grant
E-26/202.718/2018) agencies. Raphael was spon-
sored by a CAPES fellowship.
REFERENCES
Alajlan, N., El Rube, I., Kamel, M. S., and Freeman, G.
(2007). Shape retrieval using triangle-area represen-
tation and dynamic space warping. Pattern Recogn.,
40(7):1911–1920.
Alajlan, N., Kamel, M. S., and Freeman, G. (2006). Multi-
object image retrieval based on shape and topology.
Image Commun., 21(10):904–918.
Aldana-Iuit, J., Mishkin, D., Chum, O., and Matas, J.
(2016). In the saddle: Chasing fast and repeatable
features. In ICPR, pages 675–680.
Balntas, V., Riba, E., Ponsa, D., and Mikolajczyk, K.
(2016). Learning local feature descriptors with triplets
and shallow convolutional neural networks. In BMVC.
Barrow, H. G. and Tenenbaum, J. M. (1981). Interpreting
line drawings as three-dimensional surfaces. Artif. In-
tell., 17(1-3):75–116.
Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008).
Speeded-up robust features (SURF). Comput. Vis. Im-
age Underst., 110(3):346–359.
Biederman, I. (1985). Human image understanding: recent
research and a theory. Computer Vision, Graphics,
and Image Processing, 32:29–73.
Bosch, A., Zisserman, A., and Muñoz, X. (2008). Scene
classification using a hybrid generative/discriminative
approach. IEEE Trans. Pattern Anal. Mach. Intell.,
30(4):712–727.
Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T.,
Strecha, C., and Fua, P. (2012). BRIEF: Computing
a local binary descriptor very fast. IEEE Trans. Pat-
tern Anal. Mach. Intell., 34(7):1281–1298.
Cayley, A. (1858). A memoir on the theory of matrices.
Phil. Trans., 148:17–37.
Fan, X., Luo, Z., Zhang, J., Zhou, X., Jia, Q., and Luo, D.
(2014). Characteristic number: Theory and its appli-
cation to shape analysis. Axioms, 3:202–221.
Forsyth, D., Mundy, J. L., and Zisserman, A. (1991). In-
variant descriptors for 3D object recognition and pose.
IEEE Trans. Pattern Anal. Mach. Intell., pages 971–
991.
Friedman, J. H., Bentely, J., and Finkel, R. A. (1977). An
algorithm for finding best matches in logarithmic ex-
pected time. ACM Trans. Math. Softw., 3(3):209–226.
Gdalyahu, Y. and Weinshall, D. (1999). Flexible syntactic
matching of curves and its application to automatic
hierarchical classification of silhouettes. IEEE Trans.
Pattern Anal. Mach. Intell., 21(12):1312–1328.
Hartley, R. I. and Zisserman, A. (2004). Multiple View Ge-
ometry in Computer Vision. Cambridge University
Press, 2nd edition.
Jia, Q., Fan, X., Liu, Y., Li, H., Luo, Z., and Guo, H.
(2016). Hierarchical projective invariant contexts for
shape recognition. Pattern Recognit., 52:358–374.
Ke, Y. and Sukthankar, R. (2004). PCA-SIFT: A more dis-
tinctive representation for local image descriptors. In
CVPR, pages 506–513.
Li, E., Mo, H., Xu, D., and Li, H. (2019). Image projective
invariants. IEEE Trans. Pattern Anal. Mach. Intell.,
41(5):1144–1157.
Lindeberg, T. (2012). Scale selection properties of gener-
alized scale-space interest point detectors. J. Math.
Imaging Vision, 46(2):177–210.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In ICCV, pages 1150–1157.
Luo, Z., Luo, D., Fan, X., Zhou, X., and Jia, Q. (2013). A
shape descriptor based on new projective invariants.
In ICIP, pages 2862–2866.
Mishchuk, A., Mishkin, D., Radenovi
´
c, F., and Matas, J.
(2017). Working hard to know your neighbor’s mar-
gins: Local descriptor learning loss. In NIPS, pages
4829–4840.
Perwass, C. and Forstner, W. (2006). Uncertain Geome-
try with Circles, Spheres and Conics, pages 23–41.
Springer Netherlands.
Quan, L. (1995). Invariant of a pair of non-coplanar con-
ics in space: definition, geometric interpretation and
computation. In ICCV, pages 926–931.
Quan, L., Gros, P., and Mohr, R. (1991). Invariants of a pair
of conics revisited. In BMVC, pages 71–77.
Rosten, E. and Drummond, T. (2006). Machine learning for
high-speed corner detection. In ECCV, pages 430–
443.
Rosten, E., Porter, R., and Drummond, T. (2010). Faster and
better: a machine learning approach to corner detec-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 32:105–
119.
Rubner, Y., Tomasi, C., and Guibas, L. J. (1998). A metric
for distributions with applications to image databases.
In ICCV, pages 59–66.
Semple, J. G. and Kneebone, G. T. (1952). Algebraic Pro-
jective Geometry. Oxford Science Publication.
Shi, J. and Tomasi, C. (1994). Good features to track. In
CVPR, pages 593–600.
Tian, Y., Fan, B., and Wu, F. a. (2017). L2-Net: deep learn-
ing of discriminative patch descriptor in Euclidean
space. In CVPR, pages 6128–6136.
Tian, Y., Yu, X., Fan, B., Wu, F., Heijnen, H., and Balntas,
V. (2019). SOSNet: second order similarity regular-
ization for local descriptor learning. In CVPR, pages
11016–11025.
Tuytelaars, T. and Mikolajczyk, K. (2008). Local invariant
feature detectors: A survey. Found. Trends. Comput.
Graph. Vis., 3(3):177–280.
Yu, G. and Morel, J. (2011). ASIFT: An algorithm for fully
affine invariant comparison. IPOL, 1:11–38.
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
188