Imbriaco, R., Sebastian, C., Bondarev, E., et al. (2019). Ag-
gregated deep local features for remote sensing image
retrieval. Remote Sensing, 11(5):493.
J
´
egou, H., Douze, M., Schmid, C., and P
´
erez, P. (2010). Ag-
gregating local descriptors into a compact image rep-
resentation. In CVPR 2010-23rd IEEE Conference on
Computer Vision & Pattern Recognition, pages 3304–
3311. IEEE Computer Society.
Jolliffe, I. (2011). Principal component analysis. Springer.
Kalayeh, M. M., Basaran, E., G
¨
okmen, M., Kamasak,
M. E., and Shah, M. (2018). Human semantic pars-
ing for person re-identification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1062–1071.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Lin, M., Chen, Q., and Yan, S. (2013). Network in network.
arXiv preprint arXiv:1312.4400.
Lowe, D. G. et al. (1999). Object recognition from local
scale-invariant features. In iccv, volume 99, pages
1150–1157.
Luo, H., Gu, Y., Liao, X., Lai, S., and Jiang, W. (2019).
Bag of tricks and a strong baseline for deep person re-
identification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Work-
shops, pages 0–0.
Manjunath, B. S. and Ma, W.-Y. (1996). Texture features
for browsing and retrieval of image data. IEEE Trans-
actions on pattern analysis and machine intelligence,
18(8):837–842.
Manjunath, B. S., Ohm, J.-R., Vasudevan, V. V., and Ya-
mada, A. (2001). Color and texture descriptors. IEEE
Transactions on circuits and systems for video tech-
nology, 11(6):703–715.
Noh, H., Araujo, A., Sim, J., Weyand, T., and Han, B.
(2017). Large-scale image retrieval with attentive
deep local features. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
3456–3465.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in pytorch.
In NIPS-W.
Penatti, O. A. B., Nogueira, K., and dos Santos, J. A.
(2015). Do deep features generalize from everyday
objects to remote sensing and aerial scenes domains?
In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops.
Roy, S., Sangineto, E., Demir, B., and Sebe, N. (2018).
Deep metric and hash-code learning for content-based
retrieval of remote sensing images. In IGARSS 2018-
2018 IEEE International Geoscience and Remote
Sensing Symposium, pages 4539–4542. IEEE.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Sivic, J. and Zisserman, A. (2003). Video google: A text
retrieval approach to object matching in videos. In
null, page 1470. IEEE.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.
Tang, X., Zhang, X., Liu, F., and Jiao, L. (2018). Unsuper-
vised deep feature learning for remote sensing image
retrieval. Remote Sensing, 10(8).
Wang, G., Yuan, Y., Chen, X., Li, J., and Zhou, X.
(2018). Learning discriminative features with multi-
ple granularities for person re-identification. CoRR,
abs/1804.01438.
Weinberger, K. Q. and Saul, L. K. (2009). Distance met-
ric learning for large margin nearest neighbor clas-
sification. Journal of Machine Learning Research,
10(Feb):207–244.
Xiong, W., Lv, Y., Cui, Y., Zhang, X., and Gu, X. (2019).
A discriminative feature learning approach for remote
sensing image retrieval. Remote Sensing, 11:281.
Yang, Y. and Newsam, S. (2010). Bag-of-visual-words and
spatial extensions for land-use classification. In Pro-
ceedings of the 18th SIGSPATIAL international con-
ference on advances in geographic information sys-
tems, pages 270–279. ACM.
Zheng, F., Deng, g., Sun, X., Jiang, X., Guo, X., Yu, Z.,
Huang, F., and Ji, R. (2019). Pyramidal person re-
identification via multi-loss dynamic training. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8514–8522.
Zhou, W., Newsam, S., Li, C., and Shao, Z. (2017). Learn-
ing low dimensional convolutional neural networks
for high-resolution remote sensing image retrieval.
Remote Sensing, 9(5).
Zhou, W., Newsam, S., Li, C., and Shao, Z. (2018). Pattern-
net: A benchmark dataset for performance evaluation
of remote sensing image retrieval. ISPRS journal of
photogrammetry and remote sensing, 145:197–209.
Multi-Branch Convolutional Descriptors for Content-based Remote Sensing Image Retrieval
249