6 CONCLUSION
In this paper, we proposed an adaptive regression for-
est that can update itself during the test phase with
current observations to tackle the challenge of dy-
namic data. This is performed by detecting and up-
dating passive leaves of a regression forest. We apply
our adaptive regression forest to our DynaLoc, a real-
time and accurate camera relocalization from a singe
RGB image in dynamic scenes with moving objects.
Our DynaLoc achieves high accuracy on our dynamic
scenes dataset. Moreover, our method is as accurate
as the state-of-the-art methods on static scenes dataset
but performs more quickly both training and testing
time.
REFERENCES
Alcantarilla, P. F., Yebes, J. J., Almaz
´
an, J., and Bergasa,
L. M. (2012). On combining visual slam and dense
scene flow to increase the robustness of localization
and mapping in dynamic environments. In Robotics
and Automation (ICRA), 2012 IEEE International
Conference on, pages 1290–1297. IEEE.
Baatz, G., K
¨
oser, K., Chen, D., Grzeszczuk, R., and Polle-
feys, M. (2012). Leveraging 3d city models for rota-
tion invariant place-of-interest recognition. Interna-
tional Journal of Computer Vision, 96(3):315–334.
Bescos, B., Facil, J. M., Civera, J., and Neira, J. (2018).
Dynaslam: Tracking, mapping, and inpainting in dy-
namic scenes. IEEE Robotics and Automation Letters,
3(4):4076–4083.
Brachmann, E., Krull, A., Nowozin, S., Shotton, J., Michel,
F., Gumhold, S., and Rother, C. (2017). Dsac - differ-
entiable ransac for camera localization. In The IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR).
Brachmann, E., Michel, F., Krull, A., Ying Yang, M.,
Gumhold, S., et al. (2016). Uncertainty-driven 6d
pose estimation of objects and scenes from a single
rgb image. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
3364–3372.
Brachmann, E. and Rother, C. (2018). Learning less is
more-6d camera localization via 3d surface regres-
sion. In Proc. CVPR, volume 8.
Cavallari, T., Golodetz, S., Lord, N. A., Valentin, J., Di Ste-
fano, L., and Torr, P. H. S. (2017). On-the-fly adap-
tation of regression forests for online camera relocal-
isation. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).
Clark, R., Wang, S., Markham, A., Trigoni, N., and Wen, H.
(2017). Vidloc: A deep spatio-temporal model for 6-
dof video-clip relocalization. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O.
(2007). Monoslam: Real-time single camera slam.
IEEE transactions on pattern analysis and machine
intelligence, 29(6):1052–1067.
Duong, N.-D., Kacete, A., Soladie, C., Richard, P.-Y., and
Royan, J. (2018). Accurate sparse feature regression
forest learning for real-time camera relocalization. In
2018 International Conference on 3D Vision (3DV),
pages 643–652. IEEE.
Engel, J., Sch
¨
ops, T., and Cremers, D. (2014). Lsd-slam:
Large-scale direct monocular slam. In European Con-
ference on Computer Vision, pages 834–849. Springer.
Glocker, B., Shotton, J., Criminisi, A., and Izadi, S. (2015).
Real-time rgb-d camera relocalization via randomized
ferns for keyframe encoding. IEEE transactions on
visualization and computer graphics, 21(5):571–583.
Guzman-Rivera, A., Kohli, P., Glocker, B., Shotton, J.,
Sharp, T., Fitzgibbon, A., and Izadi, S. (2014). Multi-
output learning for camera relocalization. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1114–1121.
Hartley, R. and Zisserman, A. (2005). Multiple view geom-
etry in computer vision. Robotica, 23(2):271–271.
Kendall, A. and Cipolla, R. (2016). Modelling uncertainty
in deep learning for camera relocalization. Proceed-
ings of the International Conference on Robotics and
Automation (ICRA).
Kendall, A. and Cipolla, R. (2017). Geometric loss func-
tions for camera pose regression with deep learning.
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition.
Kendall, A., Grimes, M., and Cipolla, R. (2015). Posenet: A
convolutional network for real-time 6-dof camera re-
localization. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2938–2946.
Klein, G. and Murray, D. (2007). Parallel tracking and map-
ping for small ar workspaces. In Mixed and Aug-
mented Reality, 2007. ISMAR 2007. 6th IEEE and
ACM International Symposium on, pages 225–234.
IEEE.
Meng, L., Chen, J., Tung, F., Little J., J., Valentin, J., and
Silva, C. (2017). Backtracking regression forests for
accurate camera relocalization. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS 2017).
Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015).
Orb-slam: a versatile and accurate monocular slam
system. IEEE Transactions on Robotics, 31(5):1147–
1163.
Newcombe, R. A., Fox, D., and Seitz, S. M. (2015). Dy-
namicfusion: Reconstruction and tracking of non-
rigid scenes in real-time. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 343–352.
Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D.,
Kim, D., Davison, A. J., Kohi, P., Shotton, J., Hodges,
S., and Fitzgibbon, A. (2011). Kinectfusion: Real-
time dense surface mapping and tracking. In Mixed
and augmented reality (ISMAR), 2011 10th IEEE in-
ternational symposium on, pages 127–136. IEEE.
Riazuelo, L., Montano, L., and Montiel, J. (2017). Semantic
visual slam in populated environments. In 2017 Eu-
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
652