narios. Rather than processing the full network in a
batch-like operation mode, the system could build and
process a sub-network reflecting a current user focus
on-the-fly, where these sub-networks satisfying a user
requirement would likely have manageable sizes. Ad-
ditional interaction facilities could be incorporated,
such as supporting interaction with selected levels of
the multilevel hierarchy. Further validation on addi-
tional scenarios is also necessary.
ACKNOWLEDGEMENTS
The authors acknowledge the financial support of
FAPESP grants 2016/25107-0 and 2017/05838-3 and
CNPq grants 134806/2016-6 and 301847/2017-7.
REFERENCES
Adamic, L. A. and Adar, E. (2003). Friends and neighbors
on the web. Social Networks, pages 211–230.
Bartel, G., Gutwenger, C., Klein, K., and Mutzel, P. (2011).
An experimental evaluation of multilevel layout meth-
ods. In Graph Drawing, pages 80–91, Berlin, Heidel-
berg. Springer.
Bondy, J. A., Murty, U. S. R., et al. (1976). Graph theory
with applications, volume 290. Elsevier Science Ltd.,
Oxford, UK.
Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3:
Data-driven documents. IEEE Trans. Visualization
and Computer Graphics, 17(12):2301–2309.
Gajer, P. and Kobourov, S. G. (2001). Grip: Graph draw-
ing with intelligent placement. In Marks, J., editor,
Graph Drawing, pages 222–228, Berlin, Heidelberg.
Springer Berlin Heidelberg.
Ghoniem, M., Fekete, J. D., and Castagliola, P. (2004). A
comparison of the readability of graphs using node-
link and matrix-based representations. IEEE Symp.
Information Visualization, pages 17–24.
Gupta, A., Karypis, G., and Kumar, V. (1997). Highly scal-
able parallel algorithms for sparse matrix factoriza-
tion. IEEE Trans. Parallel and Distributed Systems,
8(5):502–520.
Hachul, S. and J
¨
unger, M. (2004). Drawing large graphs
with a potential-field-based multilevel algorithm. In
Proc. 12th Int. Conf. Graph Drawing, GD’04, pages
285–295, Berlin, Heidelberg. Springer.
Harel, D. and Koren, Y. (2000). A fast multi-scale method
for drawing large graphs. Proc. Working Conf. Ad-
vanced Visual Interfaces, pages 282–285.
Heinrich, J., Seifert, R., Burch, M., and Weiskopf, D.
(2011). Bicluster viewer: A visualization tool for
analyzing gene expression data. In Advances in Vi-
sual Computing, pages 641–652, Berlin, Heidelberg.
Springer Berlin Heidelberg.
Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and
Barab
´
asi, A.-L. (2000). The large-scale organization
of metabolic networks. In Nature, volume 407, page
651. Nature Publishing Group.
Lhuillier, A., Hurter, C., and Telea, A. (2017). State of the
art in edge and trail bundling techniques. Computer
Graphics Forum, pages 619–645.
Newman, M. E. (2001). The structure of scientific collabo-
ration networks. Proc. National Academy of Sciences,
pages 404–409.
Padmavathi, S. and George, A. (2014). Multilevel hybrid
graph partitioning algorithm. In IEEE Int. Advance
Computing Conf., pages 85–89.
Pezzotti, N., Fekete, J.-D., H
¨
ollt, T., Lelieveldt, B., Eise-
mann, E., and Vilanova, A. (2018). Multiscale vi-
sualization and exploration of large bipartite graphs.
Computer Graphics Forum, pages 12–25.
Rossi, R. G., de Andrade Lopes, A., and Rezende, S. O.
(2016). Optimization and label propagation in bipar-
tite heterogeneous networks to improve transductive
classification of texts. Information Processing & Man-
agement, pages 217 – 257.
Steinbock, D., Groller, E., and Waldner, M. (2018). Casual
visual exploration of large bipartite graphs using hier-
archical aggregation and filtering. Int. Symp. Big Data
Visual and Immersive Analytics, pages 1–10.
Valejo, A., Faleiros, T., Oliveira, M. C. F., and Lopes, A. A.
(2019a). A coarsening method for bipartite networks
via weight-constrained label propagation. Knowledge-
Based Systems (accepted).
Valejo, A., G
´
oes, F., Romanetto, L., Oliveira, M. C. F., and
Lopes, A. A. (2019b). A benchmarking tool for the
generation of bipartite network models with overlap-
ping communities. Knowledge and Information Sys-
tems.
Valejo, A., Oliveira, M. C. F., R. Filho, G. P., and Lopes,
A. A. (2018). Multilevel approach for combinatorial
optimization in bipartite networks. Knowledge-Based
Systems, pages 45–61.
Von Landesberger, T., Kuijper, A., Schreck, T., Kohlham-
mer, J., van Wijk, J. J., Fekete, J.-D., and Fellner,
D. W. (2011). Visual analysis of large graphs: state-
of-the-art and future research challenges. Computer
Graphics Forum, pages 1719–1749.
Walshaw, C. (2004). Multilevel refinement for combina-
torial optimisation problems. Annals of Operations
Research, pages 325–372.
Watts, D. J. (2004). Small worlds: the dynamics of networks
between order and randomness, volume 9. Princeton
University Press.
Wong, P. C., Mackey, P., Cook, K. A., Rohrer, R. M., Foote,
H., and Whiting, M. A. (2009). A multi-level middle-
out cross-zooming approach for large graph analytics.
IEEE Symp. Visual Analytics Science and Technology.,
pages 147–154.
Xu, P., Cao, N., Qu, H., and Stasko, J. (2016). Interactive
visual co-cluster analysis of bipartite graphs. IEEE
Pacific Visualization Symp., pages 32–39.
Zhao, J., Sun, M., Chen, F., and Chiu, P. (2018). Bidots: Vi-
sual exploration of weighted biclusters. IEEE Trans.
Visualization and Computer Graphics, pages 195–
204.
IVAPP 2020 - 11th International Conference on Information Visualization Theory and Applications
140