forecasting. In European business intelligence summer
school (pp. 62-77). Springer, Berlin, Heidelberg.
DirecNet. (2019). Diabetes Research in Children Network
(DirecNet). Available online at: http://direcnet.jaeb.
org/Studies.aspx [Ap. 1, 2019].
Doike, T., Hayashi, K., Arata, S., Mohammad, K. N.,
Kobayashi, A., & Niitsu, K. (2018, June). A Blood
Glucose Level Prediction System Using Machine
Learning Based on Recurrent Neural Network for
Hypoglycemia Prevention. In 2018 16th IEEE
International New Circuits and Systems Conference
(NEWCAS) (pp. 291-295). IEEE.
El Idrissi, T., Idri, A., & Bakkoury, Z. (2019a). Systematic
map and review of predictive techniques in diabetes
self-management. International Journal of
Information Management, 46, 263-277. https://doi.org/
10.1016/j.ijinfomgt.2018.09.011.
El Idrissi, T., Idri, A., Abnane, I., & Bakkoury, Z. (2019b).
Predicting Blood Glucose using an LSTM Neural
Network. In Proceedings of the 2019 Federated
Conference on Computer Science and Information
Systems. ACSIS, Vol. 18, pages 35–41.
Fox, I., Ang, L., Jaiswal, M., Pop-Busui, R., & Wiens, J.
(2018, July). Deep multi-output forecasting: Learning
to accurately predict blood glucose trajectories. In
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining
(pp. 1387-1395). ACM.
Héberger, K. (2010). Sum of ranking differences compares
methods or models fairly. TrAC Trends in Analytical
Chemistry, 29(1), 101-109.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735-1780.
Idri, A., Abnane, I., & Abran, A. (2016a). Missing data
techniques in analogy-based software development
effort estimation. Journal of Systems and Software,
117, 595-611.
Idri A, Khoshgoftaar TM, Abran A. (2002). Investigating
soft computing in casebased reasoning for software
cost estimation. Eng Intell Syst Elec. 10(3):147-157.
Idri A, Hosni M, Abran A. (2016b). Improved estimation
of software development effort using classical and
fuzzy analogy ensembles. Appl Soft Comput. 49:990-
1019.
Kline, D. M. (2004). Methods for multi-step time series
forecasting neural networks. In Neural networks in
business forecasting (pp. 226-250). IGI Global.
Mhaskar, H. N., Pereverzyev, S. V., & van der Walt, M. D.
(2017). A deep learning approach to diabetic blood
glucose prediction. Frontiers in Applied Mathematics
and Statistics, 3, 14.
Mirshekarian, S., Bunescu, R., Marling, C., & Schwartz, F.
(2017, July). Using LSTMs to learn physiological
models of blood glucose behavior. In 2017 39th Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC) (pp. 2887-
2891). IEEE.
Sorjamaa, A., & Lendasse, A. (2006, April). Time series
prediction using DirRec strategy. In
Esann (Vol. 6, pp.
143-148).
Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., & Lendasse, A.
(2007). Methodology for long-term prediction of time
series. Neurocomputing, 70(16-18), 2861-2869.
Sun, Q., Jankovic, M. V., Bally, L., & Mougiakakou, S. G.
(2018, November). Predicting Blood Glucose with an
LSTM and Bi-LSTM Based Deep Neural Network. In
2018 14th Symposium on Neural Networks and
Applications (NEUREL) (pp. 1-5). IEEE.
Taieb, S. B., Bontempi, G., Atiya, A. F., & Sorjamaa, A.
(2012). A review and comparison of strategies for
multi-step ahead time series forecasting based on the
NN5 forecasting competition. Expert systems with
applications, 39(8), 7067-7083.
Taieb, S. B., Bontempi, G., Sorjamaa, A., & Lendasse, A.
(2009, June). Long-term prediction of time series by
combining direct and mimo strategies. In 2009
International Joint Conference on Neural Networks
(pp. 3054-3061). IEEE.
Xie, J., & Wang, Q. (2018, January). Benchmark Machine
Learning Approaches with Classical Time Series
Approaches on the Blood Glucose Level Prediction
Challenge. In KHD@ IJCAI (pp. 97-102).