Girshick, R. (2015a). Fast r-cnn. In Proceedings of the
IEEE international conference on computer vision,
pages 1440–1448.
Girshick, R. (2015b). Fast r-cnn. In Proceedings of the
IEEE international conference on computer vision,
pages 1440–1448.
Gong, Y., Sin, L. T., Chuan, C. H., Zhang, H., and Sakauchi,
M. (1995). Automatic parsing of tv soccer programs.
In Proceedings of the International Conference on
Multimedia Computing and Systems, pages 167–174.
Halbinger, J. and Metzler, J. (2015). Video-based soc-
cer ball detection in difficult situations. In Cabri, J.,
Pezarat Correia, P., and Barreiros, J., editors, Sports
Science Research and Technology Support, pages 17–
24, Cham. Springer International Publishing.
Higham, D., Kelley, J., Hudson, C., and Goodwill, S. R.
(2016). Finding the optimal background subtraction
algorithm for eurohockey 2015 video. Procedia Engi-
neering, 147:637 – 642. The Engineering of SPORT
11.
Kamble, P., Keskar, A., and Bhurchandi, K. (2019). A deep
learning ball tracking system in soccer videos. Opto-
Electronics Review, 27(1):58–69.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Komorowski, J., Kurzejamski, G., and Sarwas, G. (2019).
Deepball: Deep neural-network ball detector. In Pro-
ceedings of the 14th International Joint Conference
on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 5: VISAPP, pages
297–304. INSTICC, SciTePress.
Lehuger, A., Duffner, S., and Garcia, C. (2007). A robust
method for automatic player detection in sport videos.
Orange Labs, 4.
Lin, T.-Y., Doll
´
ar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2017). Feature pyramid networks
for object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2117–2125.
Liu, J., Tong, X., Li, W., Wang, T., Zhang, Y., and Wang,
H. (2009). Automatic player detection, labeling and
tracking in broadcast soccer video. Pattern Recogni-
tion Letters, 30(2):103–113.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In European conference on com-
puter vision, pages 21–37. Springer.
Lu, K., Chen, J., Little, J. J., and He, H. (2017). Light
cascaded convolutional neural networks for accurate
player detection. In British Machine Vision Confer-
ence 2017, BMVC 2017, London, UK, September 4-7,
2017.
Lu, W.-L., Ting, J.-A., Little, J. J., and Murphy, K. P.
(2013). Learning to track and identify players from
broadcast sports videos. IEEE transactions on pattern
analysis and machine intelligence, 35(7):1704–1716.
Ma
´
ckowiak, S., Kurc, M., Konieczny, J., and Ma
´
ckowiak,
P. (2010). A complex system for football player de-
tection in broadcasted video. In ICSES 2010 Interna-
tional Conference on Signals and Electronic Circuits,
pages 119–122. IEEE.
Manafifard, M., Ebadi, H., and Moghaddam, H. A. (2017).
A survey on player tracking in soccer videos. Com-
puter Vision and Image Understanding, 159:19–46.
Mazzeo, P. L., Leo, M., Spagnolo, P., and Nitti, M. (2012).
Soccer ball detection by comparing different feature
extraction methodologies. Advances in Artificial In-
telligence, 2012:6.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in pytorch.
In NIPS-W.
Poppe, C., De Bruyne, S., Verstockt, S., and Van de Walle,
R. (2010). Multi-camera analysis of soccer sequences.
In Advanced Video and Signal Based Surveillance
(AVSS), 2010 Seventh IEEE International Conference
on, pages 26–31. IEEE.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems, pages 91–99.
Reno, V., Mosca, N., Marani, R., Nitti, M., DOrazio, T.,
and Stella, E. (2018). Convolutional neural networks
based ball detection in tennis games. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops, pages 1758–1764.
S¸ah, M. and Direko
˘
glu, C. (2018). Evaluation of image rep-
resentations for player detection in field sports using
convolutional neural networks. In International Con-
ference on Theory and Applications of Fuzzy Systems
and Soft Computing, pages 107–115. Springer.
Speck, D., Barros, P., Weber, C., and Wermter, S. (2017).
Ball localization for robocup soccer using convolu-
tional neural networks. In Behnke, S., Sheh, R., Sarıel,
S., and Lee, D. D., editors, RoboCup 2016: Robot
World Cup XX, pages 19–30, Cham. Springer Inter-
national Publishing.
Yoon, H.-S., Bae, Y.-l. J., and Yang, Y.-k. (2002). A soc-
cer image sequence mosaicking and analysis method
using line and advertisement board detection. ETRI
journal, 24(6):443–454.
Zhang, L., Lu, Y., Song, G., and Zheng, H. (2018). Rc-cnn:
Reverse connected convolutional neural network for
accurate player detection. In Pacific Rim International
Conference on Artificial Intelligence, pages 438–446.
Springer.
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
56