For the complete analysis, RNAmultifold will be
extended to automatically enumerate all permutations
π and all complexes consisting of subsets of the in-
put strands up to a maximum interaction order. It will
then compute equilibrium constants and solve the re-
sulting non-linear system of equations to obtain con-
centrations for each complex. To reduce the combi-
natorial explosion of permutations and compositions,
users will be able to supply a list of complexes that are
of interest. An automatic selection of the maximal in-
teraction order may be achieved by starting with the
smallest complexes, increasing the maximum interac-
tion order step by step, until the computed equilibrium
concentrations do not change significantly anymore.
AVAILABILITY
RNAmultifold can be downloaded as
part of ViennaRNA Package 2.5.0a1 from
www.tbi.univie.ac.at/RNA.
ACKNOWLEDGMENTS
This work was supported in part by the German Fed-
eral Ministry of Education and Research (BMBF,
project no. 031A538A, de.NBI-RBC, to PFS and
project no. 031L0164C, RNAProNet, to PFS), and the
Austrian science fund FWF (project no. I 2874 “Pre-
diction of RNA-RNA interactions”, project no. F 43
“RNA regulation of the transcriptome”, to ILH).
REFERENCES
Alkan, C., Karakoc¸, E., Nadeau, J. H., Sahinalp, S. C.,
and Zhang, K. Z. (2006). Rna-rna interaction predic-
tion and antisense rna target search. J. Comput. Biol.,
13:267–282.
Andronescu, M., Zhang, Z. C., and Condon, A. (2005).
Secondary structure prediction of interacting RNA
molecules. J. Mol. Biol., 345:987–1001.
Bernhart, S. H., M
¨
uckstein, U., and Hofacker, I. L. (2011).
RNA accessibility in cubic time. Algorithms Mol
Biol., 6:3.
Bernhart, S. H., Tafer, H., M
¨
uckstein, U., Flamm, C.,
Stadler, P. F., and Hofacker, I. L. (2006). Partition
function and base pairing probabilities of RNA het-
erodimers. Algorithms Mol. Biol., 1:3.
Bindewald, E., Afonin, K., Jaeger, L., and Shapiro, B. A.
(2011). Multistrand rna secondary structure prediction
and nanostructure design including pseudoknots. ACS
Nano, 5:9542–9551.
Busch, A., Richter, A., and Backofen, R. (2008). IntaRNA:
efficient prediction of bacterial sRNA targets incorpo-
rating target site accessibility and seed regions. Bioin-
formatics, 24:2849–2856.
Chappell, J., Watters, K. E., Takahashi, M. K., and Lucks,
J. B. (2015). A renaissance in RNA synthetic biology:
new mechanisms, applications and tools for the future.
Curr. Op. Chem. Biol., 28:47–56.
Chitsaz, H., Salari, R., Sahinalp, S. C., and Backofen, R.
(2009). A partition function algorithm for interacting
nucleic acid strands. Bioinformatics, 25:i365–i373.
Dimitrov, R. A. and Zuker, M. (2004). Prediction of hy-
bridization and melting for double-stranded nucleic
acids. Biophys. J., 87:215–226.
Ding, Y., Chan, C. Y., and Lawrence, C. E. (2004). Sfold
web server for statistical folding and rational design
of nucleic acids. Nucleic Acids Res, 32:W135–W141.
Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E., and
Pierce, N. A. (2007). Thermodynamic analysis of in-
teracting nucleic acid strands. SIAM Rev., 49:65–88.
Dutta, T. and Srivastava, S. (2018). Small RNA-mediated
regulation in bacteria: A growing palette of diverse
mechanisms. Gene, 656:60–72.
Forties, R. A. and Bundschuh, R. (2010). Modeling the in-
terplay of single stranded binding proteins and nucleic
acid secondary structure. Bioinformatics, 26:61–67.
Gong, J., Ju, Y., Shao, D., and Zhang, Q. C. (2018). Ad-
vances and challenges towards the study of RNA-
RNA interactions in a transcriptome-wide scale.
Quant Biol, 6:239–252.
Guil, S. and Esteller, M. (2015). RNA-RNA interactions
in gene regulation: the coding and noncoding players.
Trends Biochem Sci., 40:248–256.
Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer,
L. S., Tacker, M., and Schuster, P. (1994). Fast
folding and comparison of RNA secondary structures.
Monatsh. Chem., 125:167–188.
Hofacker, I. L., Reidys, C. M., and Stadler, P. F. (2012).
Symmetric circular matchings and RNA folding.
Discr. Math., 312:100–112.
H
¨
oner zu Siederdissen, C., Prohaska, S. J., and Stadler, P. F.
(2015). Algebraic dynamic programming over general
data structures. BMC Bioinformatics, 16:19:S2.
Huang, F. W. D., Qin, J., Reidys, C. M., and Stadler, P. F.
(2009). Partition function and base pairing probabil-
ities for RNA-RNA interaction prediction. Bioinfor-
matics, 25:2646–2654.
Isaacs, F. J., Dwyer, D. J., and Collins, J. J. (2006). RNA
synthetic biology. Nat Biotechnol., 24:545–554.
Legendre, A., Angel, E., and Tahi, F. (2019). RCPred: RNA
complex prediction as a constrained maximum weight
clique problem. BMC Bioinformatics, 20:128.
Lorenz, R., Bernhart, S. H., H
¨
oner zu Siederdissen, C.,
Tafer, H., Flamm, C., Stadler, P. F., and Hofacker, I. L.
(2011). ViennaRNA Package 2.0. Alg. Mol. Biol.,
6:26.
Lorenz, R., Bernhart, S. H., Qin, J., H
¨
oner zu Siederdis-
sen, C., Tanzer, A., Amman, F., Hofacker, I. L., and
Stadler, P. F. (2013). 2D meets 4G: G-quadruplexes
BIOINFORMATICS 2020 - 11th International Conference on Bioinformatics Models, Methods and Algorithms
30