5 CONCLUSIONS
We have proposed a photon propagation model for
correction of fluorescence on absorption in two
realistic scenarios: when fluorophores are located a)
on the surface of the turbid tissue and b) in a layer
within the turbid tissue. The models require
measurements of diffuse reflection of the tissue at
excitation and emission wavelength and do not
require precise measurement of optical properties
(e.g., coefficient of absorption). The approach can be
implemented using an inexpensive imaging setup and
can be used in any setting.
REFERENCES
Sevick-Muraca E.M., 2012, Translation of Near-Infrared
Fluorescence Imaging Technologies: Emerging
Clinical Applications, An Rev Med, 63: 217-231.
Dartnell L.R, Roberts T.A, Moore G, Ward J.M, Muller J.P.
2013. Fluorescence Characterization of Clinically-
Important Bacteria. PLoS ONE; 8: e75270.
Kjeldstad B, Christensen T, Johnsson A. 1985. Porphyrin
photosensitization of bacteria. Adv. Exp. Med. Biol.
193: 155-159.
Cody Y.S, Gross D.C. 1987. Characterization of pyoverdin
(pss), the fluorescent siderophore produced by
Pseudomonas syringae pv. Syringae. Appl. Environ.
Microbiol. 53: 928-934.
Bradley R. S., Thorniley M. S., 2006, A review of
attenuation correction techniques for tissue
fluorescence. J. Roy. Soc, Interface, 3(6), 1–13.
Liu C. H., Das B. B., Glassman W. L. S., Tang G. C., Yoo
K. M., Zhu H. R, Akins D. L, Lubicz S. S, Cleary J.,
Prudente R, Celmer E, Caron A., and Alfano R. R.,
1992. Raman, fluorescence, and time-resolved light-
scattering as optical diagnostic-techniques to separate
diseased and normal biomedical media, J. Photochem.
Photobiol. B 16~2 187–209.
Anidjar M., Cussenot O., Avrillier S, Ettori D., Villette M.
J., Fiet J., Teillac P., and Le Duc A., 1996. Ultraviolet
laser-induced autofluorescence distinction between
malignant and normal urothelial cells and tissues, JBO.
1, 335–341.
Wu J., Feld M. S., and Rava R. P., 1993. Analytical model
for extracting quantitative fluorescence in turbid media,
Appl. Opt. 32, 3585–3595.
Muller M. G., Georgakoudi I., Zhang Q., Wu J., and Feld
M. S., 2001. Intrinsic fluorescence spectroscopy in
turbid media: disentangling effects of scattering and
absorption, Appl. Opt. 40, 4633–4646.
Pfefer T. J., Schomacker K. T, Ediger M. N, and Nishioka
N. S., 2001. Light propagation in tissue during
fluorescence spectroscopy with single-fiber probes,
IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012.
Kim A., Khurana M., Moriyama Y., and Wilson B. C.,
2010. Quantification of in vivo fluorescence decoupled
from the effects of tissue optical properties using fiber-
optic spectroscopy measurements, JBO. 15(6), 067006.
Valdes P.A., Angelo J.P., Choi H.S, and Gioux S, 2017. qF-
SSOP: real-time optical property corrected
fluorescence imaging, BOE 8, 3597-3605.
Yang B., Tunnell J.B., 2014. Real-time absorption reduced
surface fluorescence imaging, JBO, 19(9), 090505.
Lin W.C, Toms S.A, Jansen E.D, and Mahadevan-Jansen
A, 2001. Interoperative Application of Optical
Spectroscopy in the Presence of Blood, IEEE J. on Sel.
Top. in Quantum Electron, 7(6), 996- 1003.
Zhang Y., Hou H., Zhang Y., Wang Y., Zhu L., Dong M.,
Liu Y., 2018, Tissue intrinsic fluorescence recovering
by an empirical approach based on the PSO algorithm
and its application in type 2 diabetes screening, BOE 9:
1795-1808.
Welch A.J., van Gemert M.J.C., Star W.M., 2011,
Definitions and Overview of Tissue Optics in Optical-
Thermal Response to Laser-Irradiated Tissue, Ed.
Welch AJ, Springer, Dordrecht, NLD, 2
nd
edition.
Star W.M., 2011, Diffuse Theory of Light Transport in
Optical-Thermal Response to Laser-Irradiated Tissue,
Ed. Welch AJ, Springer, Dordrecht, NLD, 2
nd
edition.
Bashkatov A.N., Genina E.A., Tuchin V.V, 2011. Optical
Properties of Skin, Subcutaneous, and Muscle Tissues:
a Review, J. Inn. Opt. Health Sci, 4(1) 9-38.
Saiko G., Zheng X., Betlen A., Douplik A., 2019,
Fabrication and Optical Characterization of Gelatin-
Based Phantoms for Tissue Oximetry, Adv Exp Med
Biol (in press).