Trajectories from Birth to Adulthood. Cell, 177(3),
587-596.e9. https://doi.org/10.1016/j.cell.2019.03.028
Khera, A. V, Chaffin, M., Aragam, K. G., Haas, M. E.,
Roselli, C., Choi, S. H., … Kathiresan, S. (2018).
Genome-wide polygenic scores for common diseases
identify individuals with risk equivalent to monogenic
mutations. Nature Genetics, 50(9), 1219–1224.
https://doi.org/10.1038/s41588-018-0183-z
Kirby, J. C., Speltz, P., Rasmussen, L. V, Basford, M.,
Gottesman, O., Peissig, P. L., … Denny, J. C. (2016).
PheKB: a catalog and workflow for creating electronic
phenotype algorithms for transportability. Journal of
the American Medical Informatics Association, 23(6),
1046–1052. https://doi.org/10.1093/jamia/ocv202
Li, R., Chen, Y., & Moore, J. H. (2019). Integration of
genetic and clinical information to improve imputation
of data missing from electronic health records. Journal
of the American Medical Informatics Association.
https://doi.org/10.1093/jamia/ocz041
Li, R., Duan, R., Kember, R. L., Rader, D. J., Damrauer, S.
M., Moore, J. H., & Chen, Y. (2019). A regression
framework to uncover pleiotropy in large-scale
electronic health record data. Journal of the American
Medical Informatics Association. https://doi.org/
10.1093/jamia/ocz084
Lo, A., Chernoff, H., Zheng, T., & Lo, S.-H. (2015). Why
significant variables aren’t automatically good
predictors. Proceedings of the National Academy of
Sciences of the United States of America, 112(45),
13892–13897. https://doi.org/10.1073/pnas.151828
5112.
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B.,
Hindorff, L. A., Hunter, D. J., … Visscher, P. M.
(2009). Finding the missing heritability of complex
diseases. Nature, 461(7265), 747–753. https://doi.org/
10.1038/nature08494
Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G.
L., Neale, B. M., Gravel, S., … Kenny, E. E. (2017).
Human Demographic History Impacts Genetic Risk
Prediction across Diverse Populations. The American
Journal of Human Genetics, 100(4), 635–649.
https://doi.org/10.1016/j.ajhg.2017.03.004
Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale,
B. M., & Daly, M. J. (2019). Current clinical use of
polygenic scores will risk exacerbating health
disparities. BioRxiv, 441261. https://doi.org/10.1101/
441261
McCarty, C. A., Chisholm, R. L., Chute, C. G., Kullo, I. J.,
Jarvik, G. P., Larson, E. B., … eMERGE Team. (2011).
The eMERGE Network: a consortium of
biorepositories linked to electronic medical records
data for conducting genomic studies. BMC Medical
Genomics, 4, 13. https://doi.org/10.1186/1755-8794-4-
13
Pencina, M. J., D’Agostino, R. B., D’Agostino, R. B., &
Vasan, R. S. (2008). Evaluating the added predictive
ability of a new marker: From area under the ROC
curve to reclassification and beyond. Statistics in
Medicine, 27(2), 157–172. https://doi.org/10.1002/
sim.2929
Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M.,
O’Donovan, M. C., Sullivan, P. F., … Sklar, P. (2009).
Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder. Nature, 460(7256),
748. https://doi.org/10.1038/nature08185
Robinson, J. R., Wei, W.-Q., Roden, D. M., & Denny, J. C.
(2018). Defining Phenotypes from Clinical Data to
Drive Genomic Research.
https://doi.org/10.1146/annurev-biodatasci
Rosenberg, N. A., Edge, M. D., Pritchard, J. K., & Feldman,
M. W. (2019). Interpreting polygenic scores, polygenic
adaptation, and human phenotypic differences.
Evolution, Medicine, and Public Health, 2019(1), 26–
34. https://doi.org/10.1093/emph/eoy036
Schizophrenia Working Group of the Psychiatric Genomics
Consortium. (2014). Biological insights from 108
schizophrenia-associated genetic loci. Nature,
511(7510), 421–427. https://doi.org/10.1038/
nature13595
Torkamani, A., Wineinger, N. E., & Topol, E. J. (2018).
The personal and clinical utility of polygenic risk
scores. Nature Reviews Genetics, 19(9), 581–590.
https://doi.org/10.1038/s41576-018-0018-x
Verma, S. S., de Andrade, M., Tromp, G., Kuivaniemi, H.,
Pugh, E., Namjou-Khales, B., … Ritchie, M. D. (2014).
Imputation and quality control steps for combining
multiple genome-wide datasets. Frontiers in Genetics,
5, 370. https://doi.org/10.3389/fgene.2014.00370
Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P.,
McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10
Years of GWAS Discovery: Biology, Function, and
Translation. The American Journal of Human Genetics,
101(1), 5–22. https://doi.org/10.1016/J.AJHG.2017.
06.005
Wei, W.-Q., & Denny, J. C. (2015). Extracting research-
quality phenotypes from electronic health records to
support precision medicine. Genome Medicine, 7(1),
41. https://doi.org/10.1186/s13073-015-0166-y
Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S.,
Henders, A. K., Nyholt, D. R., … Visscher, P. M.
(2010). Common SNPs explain a large proportion of the
heritability for human height. Nature Genetics, 42(7),
565–569. https://doi.org/10.1038/ng.608
Zhang, J.-P., Robinson, D., Yu, J., Gallego, J.,
Fleischhacker, W. W., Kahn, R. S., … Lencz, T. (2019).
Schizophrenia Polygenic Risk Score as a Predictor of
Antipsychotic Efficacy in First-Episode Psychosis.
American Journal of Psychiatry, 176(1), 21–28.
https://doi.org/10.1176/appi.ajp.2018.17121363
Zhang, X., Veturi, Y., Verma, S., Bone, W., Verma, A.,
Lucas, A., … Ritchie, M. D. (2019). Detecting potential
pleiotropy across cardiovascular and neurological
diseases using univariate, bivariate, and multivariate
methods on 43,870 individuals from the eMERGE
network. Pacific Symposium on Biocomputing. Pacific
Symposium on Biocomputing, 24, 272–283. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/30864329