ics/ACM SIGGRAPH symposium on Geometry pro-
cessing, pages 193–203. ACM.
Bucksch, A. and Lindenbergh, R. (2008). Campino—a
skeletonization method for point cloud processing. IS-
PRS journal of photogrammetry and remote sensing,
63(1):115–127.
Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., and Su,
Z. (2010). Point cloud skeletons via laplacian based
contraction. In 2010 Shape Modeling International
Conference, pages 187–197. IEEE.
CGAL (2019). CGAL User and Reference Manual. CGAL
Editorial Board, 4.14 edition.
Cheng, H.-L. and Shi, X. (2009). Quality mesh generation
for molecular skin surfaces using restricted union of
balls. Computational Geometry, 42(3):196 – 206.
Daniels II, J., Lizier, M., Siqueira, M., Silva, C. T., and
Nonato, L. G. (2011). Template-based quadrilateral
meshing. Computers & Graphics, 35(3):471–482.
Edelsbrunner, H. (1999). Deformable smooth surface de-
sign. Discrete & Computational Geometry, 21(1):87–
115.
Fogg, H. J., Armstrong, C. G., and Robinson, T. T. (2013).
Multi-block decomposition using cross-fields. Pro-
ceedings of adaptive modelling and simulation, Lis-
bon, pages 254–267.
Gobeawan, L., Lin, E., Tandon, A., Yee, A., Khoo, V., Teo,
S., Yi, S., Lim, C., Wong, S., Wise, D., et al. (2018).
Modeling trees for virtual singapore: From data ac-
quisition to citygml models. International Archives of
the Photogrammetry, Remote Sensing & Spatial Infor-
mation Sciences, 42.
Gobeawan, L., Wise, D. J., Yee, A. T. K., Wong, S. T.,
Lim, C., Lin, E. S., and Su, Y. (2019). Convenient
tree species modeling for virtual cities. In Advances
in Computer Graphics - 36th Computer Graphics
International Conference, CGI 2019, Calgary, AB,
Canada, June 17-20, 2019, Proceedings, pages 304–
315.
Godin, C., Ccostes, E., and Sinoquet, H. (1999). A
method for describing plant architecture which in-
tegrates topology and geometry. Annals of Botany,
84(3):343–357.
Hackenberg, J., Morhart, C., Sheppard, J., Spiecker, H., and
Disney, M. (2014). Highly accurate tree models de-
rived from terrestrial laser scan data: A method de-
scription. Forests, 5:1069–1105.
Hu, S., Li, Z., Zhang, Z., He, D., and Wimmer, M.
(2017). Efficient tree modeling from airborne lidar
point clouds. Comput. Graph., 67(C):1–13.
Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li,
G., and Chen, B. (2013). L1-medial skeleton of point
cloud. ACM Trans. Graph., 32(4):65–1.
Ji, Z., Liu, L., and Wang, Y. (2010). B-mesh: a modeling
system for base meshes of 3d articulated shapes. In
Computer Graphics Forum, volume 29, pages 2169–
2177. Wiley Online Library.
Li, P., Wang, B., Sun, F., Guo, X., Zhang, C., and Wang, W.
(2015). Q-mat: Computing medial axis transform by
quadratic error minimization. ACM Transactions on
Graphics (TOG), 35(1):8.
Li, R., Bu, G., and Wang, P. (2017). An automatic tree
skeleton extracting method based on point cloud of
terrestrial laser scanner. International Journal of Op-
tics, 2017:1–11.
Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., and
El-Sana, J. (2010). Automatic reconstruction of tree
skeletal structures from point clouds. ACM Trans.
Graph., 29(6):151:1–151:8.
Pfeifer, N., Gorte, B., Winterhalder, D., et al. (2004). Au-
tomatic reconstruction of single trees from terrestrial
laser scanner data. In Proceedings of 20th ISPRS
Congress, volume 35, pages 114–119. ISPRS Istan-
bul.
Poh, H., Lim, C., Ge, Z., Wise, D., Lou, J., Eng, Y., Lin, E.,
Burcham, D., Li, K., Lee, I., Chang, S., Chan, W.-L.,
Lee, H., and Khoo, B. (2019). Fractal tree geometry
reconstruction and meshing: From point cloud model
to tree aerodynamic simulation. In The Eighth Inter-
national Symposium on Physics of Fluids (ISPF8).
Raumonen, P., Kaasalainen, M.,
˚
Akerblom, M.,
Kaasalainen, S., Kaartinen, H., Vastaranta, M.,
Holopainen, M., Disney, M., and Lewis, P. (2013).
Fast automatic precision tree models from terrestrial
laser scanner data. Remote Sensing, 5:491–520.
Soon, K. and Khoo, V. (2017). Citygml modelling for singa-
pore 3d national mapping. The International Archives
of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, 42:37.
Su, Z., Zhao, Y., Zhao, C., Guo, X., and Li, Z. (2011).
Skeleton extraction for tree models. Math. Comput.
Model., 54(3-4):1115–1120.
Tagliasacchi, A., Zhang, H., and Cohen-Or, D. (2009).
Curve skeleton extraction from incomplete point
cloud. ACM Trans. Graph., 28(3):71:1–71:9.
Vicari, M. B., Disney, M., Wilkes, P., Burt, A., Calders,
K., and Woodgate, W. (2019). Leaf and wood clas-
sification framework for terrestrial lidar point clouds.
Methods in Ecology and Evolution, 10(5):680–694.
Wang, D., Hollaus, M., and Pfeifer, N. (2017). Feasibility
of machine learning methods for separating wood and
leaf points from terrestrial laser scanning data. ISPRS
Annals of Photogrammetry, Remote Sensing & Spatial
Information Sciences, 4.
Xie, D., Wang, X., Qi, J., Chen, Y., Mu, X., Zhang, W., and
Yan, G. (2018). Reconstruction of single tree with
leaves based on terrestrial lidar point cloud data. Re-
mote Sensing, 10:686.
Xu, H., Gossett, N., and Chen, B. (2007). Knowledge and
heuristic-based modeling of laser-scanned trees. ACM
Trans. Graph., 26(4).
Yan, D., Wintz, J., Mourrain, B., Wang, W., Boudon, F., and
Godin, C. (2009). Efficient and robust reconstruction
of botanical branching structure from laser scanned
points. In 2009 11th IEEE International Conference
on Computer-Aided Design and Computer Graphics,
pages 572–575.
Zhu, X., Jin, X., and You, L. (2015). High-quality tree
structures modelling using local convolution surface
approximation. The Visual Computer, 31(1):69–82.