ACKNOWLEDGMENTS
This study was financed in part by FAPESP
(2015/22308-2, 2017/25835-9 and 2018/25671-9)
and the Coordenac¸
˜
ao de Aperfeic¸oamento de Pessoal
de N
´
ıvel Superior - Brasil (CAPES) - Finance Code
001.
REFERENCES
Abazajian, K. N. et al. (2009). The Seventh Data Release
of the Sloan Digital Sky Survey. The Astrophysical
Journal Supplement Series, 182(2):543–558.
Ackermann, S., Schawinski, K., Zhang, C., Weigel, A. K.,
and Turp, M. D. (2018). Using transfer learning to
detect galaxy mergers. Monthly Notices of the Royal
Astronomical Society, 479(1):415–425.
Aniyan, A. and Thorat, K. (2017). Classifying radio galax-
ies with the convolutional neural network. The Astro-
physical Journal Supplement Series, 230(2):20.
Baillard, A., Bertin, E., De Lapparent, V., Fouqu
´
e, P.,
Arnouts, S., Mellier, Y., Pell
´
o, R., Leborgne, J.-F.,
Prugniel, P., Makarov, D., et al. (2011). The EFIGI
catalogue of 4458 nearby galaxies with detailed mor-
phology. Astronomy & Astrophysics, 532:A74.
Ball, N. M. and Brunner, R. J. (2010). Data mining and
machine learning in astronomy. International Journal
of Modern Physics D, 19(07):1049–1106.
Bengio, Y. (2012). Deep learning of representations for
unsupervised and transfer learning. In Proc. ICML,
pages 17–36.
Bertin, E. (1994). Classification of astronomical images
with a neural network. Astrophysics and Space Sci-
ence, 217(1-2):49–51.
Bertin, E. and Arnouts, S. (1996). Sextractor: Software for
source extraction. Astronomy and Astrophysics Sup-
plement Series, 117(2):393–404.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In Proc. CVPR, pages 248–255.
Dieleman, S., Willett, K. W., and Dambre, J. (2015).
Rotation-invariant convolutional neural networks for
galaxy morphology prediction. Monthly notices of the
Royal Astronomical Society, 450(2):1441–1459.
Ferrari, F., de Carvalho, R. R., and Trevisan, M. (2015).
Morfometryka – a new way of establishing morpho-
logical classification of galaxies. The Astrophysical
Journal, 814(1):55.
Gauci, A., Adami, K. Z., and Abela, J. (2010). Machine
Learning for Galaxy Morphology Classification.
Glorot, X. and Bengio, Y. (2010). Understanding the dif-
ficulty of training deep feedforward neural networks.
In Proc. AISTATS, pages 249–256.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. Proc. CVPR.
Huang, G., Liu, Z., Maaten, L. v. d., and Weinberger, K. Q.
(2017). Densely connected convolutional networks.
Proc. CVPR.
Hubble, E. P. (1982). The realm of the nebulae, volume 25.
Yale University Press.
Ivezi
´
c,
ˇ
Z., Connolly, A. J., VanderPlas, J. T., and Gray, A.
(2014). Statistics, Data Mining, and Machine Learn-
ing in Astronomy: A Practical Python Guide for the
Analysis of Survey Data. Princeton University Press.
Kim, E. J. and Brunner, R. J. (2016). Star-galaxy clas-
sification using deep convolutional neural networks.
Monthly Notices of the Royal Astronomical Society,
page 2672.
Kingma, D. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv:1412.6980.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems, pages 1097–1105.
Krogh, A. and Hertz, J. A. (1992). A simple weight de-
cay can improve generalization. In Proc. NIPS, pages
950–957.
Lintott, C. J., Schawinski, K., Slosar, A., Land, K., Bam-
ford, S., Thomas, D., Raddick, M. J., Nichol, R. C.,
Szalay, A., Andreescu, D., Murray, P., and Vanden-
berg, J. (2008). Galaxy Zoo: morphologies derived
from visual inspection of galaxies from the Sloan Dig-
ital Sky Survey. Monthly Notices of the Royal Astro-
nomical Society, 389(3):1179–1189.
Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and
Han, J. (2019). On the variance of the adaptive learn-
ing rate and beyond.
Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rec-
tifier nonlinearities improve neural network acoustic
models. In Proc. ICML, volume 30, page 3.
Moore, J. A., Pimbblet, K. A., and Drinkwater, M. J.
(2006). Mathematical morphology: Star/galaxy dif-
ferentiation & galaxy morphology classification. Pub-
lications of the Astronomical Society of Australia,
23(04):135146.
Odewahn, S. (1995). Automated classification of astronom-
ical images. Publications of the Astronomical Society
of the Pacific, 107(714):770.
Oliveira, C. M., Ribeiro, T., Schoenell, W., Kanaan, A.,
Overzier, R. A., Molino, A., Sampedro, L., Coelho,
P., Barbosa, C. E., Cortesi, A., Costa-Duarte, M. V.,
Herpich, F. R., et al. (2019). The Southern Photo-
metric Local Universe Survey (S-PLUS): improved
SEDs, morphologies and redshifts with 12 optical fil-
ters. arXiv:1907.01567.
Pan, S. J. and Yang, Q. (2009). A survey on transfer learn-
ing. Proc. TKDE, 22(10):1345–1359.
Qian, N. (1999). On the momentum term in gradi-
ent descent learning algorithms. Neural networks,
12(1):145–151.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252.
Sanchez, H. et al. (2018). Transfer learning for galaxy mor-
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
94