REFERENCES
(2018). Elsevier sciencedirect apis. https://dev.elsevier.
com/sciencedirect.html#/Article Retrieval.
(2019). https://tfhub.dev/google/imagenet/mobilenet v2
050 96/feature vector/2.
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., et al. (2016). Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467.
Abhijit Balaji, Thuvaarakkesh Ramanathan, V. S. (2018).
Chart-text: A fully automated chart image descriptor.
CoRR, abs/1812.10636.
Aggarwal, C. C. and Zhai, C. (2012). Mining text data.
Springer Science & Business Media.
Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992).
A training algorithm for optimal margin classifiers.
In Proceedings of the 5th Annual ACM Workshop
on Computational Learning Theory, pages 144–152.
ACM Press.
Charbonnier, J., Sohmen, L., Rothman, J., Rohden, B., and
Wartena, C. (2018). Noa: A search engine for reusable
scientific images beyond the life sciences. In Pasi, G.,
Piwowarski, B., Azzopardi, L., and Hanbury, A., ed-
itors, Advances in Information Retrieval, pages 797–
800, Cham. Springer International Publishing.
Chen, M., Grinstein, G., Johnson, C. R., Kennedy, J., and
Tory, M. (2017). Pathways for theoretical advances in
visualization. IEEE computer graphics and applica-
tions, 37(4):103–112.
Chollet, F. et al. (2015). Keras. https://keras.io.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
In Machine Learning, pages 273–297.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.
org.
Harris, R. L. (2000). Information graphics: A comprehen-
sive illustrated reference. Oxford University Press.
Ho, T. K. (1995). Random decision forests. In Proceedings
of 3rd international conference on document analysis
and recognition, volume 1, pages 278–282. IEEE.
Joachims, T. (1998). Text categorization with support vec-
tor machines: Learning with many relevant features.
In European conference on machine learning, pages
137–142. Springer.
Jobin, K. V., Mondal, A., and Jawahar, C. V. (2019).
Docfigure: A dataset for scientific document figure
classification. In 2019 International Conference on
Document Analysis and Recognition Workshops (IC-
DARW), volume 1, pages 74–79.
Jung, D., Kim, W., Song, H., Hwang, J.-i., Lee, B., Kim,
B., and Seo, J. (2017). Chartsense: Interactive data
extraction from chart images. In Proceedings of the
2017 CHI Conference on Human Factors in Comput-
ing Systems, pages 6706–6717. ACM.
Kaur, P., Klan, F., and K
¨
onig-Ries, B. (2018). Issues and
suggestions for the development of a biodiversity data
visualization support tool. In Proceedings of the Eu-
rographics/IEEE VGTC Conference on Visualization:
Short Papers, EuroVis ’18, pages 73–77.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Lee, P.-s., West, J. D., and Howe, B. (2017). Viziometrics:
Analyzing visual information in the scientific litera-
ture. IEEE Transactions on Big Data, 4(1):117–129.
Liu, Y., Lu, X., Qin, Y., Tang, Z., and Xu, J. (2013). Review
of chart recognition in document images. In Visualiza-
tion and Data Analysis 2013, volume 8654, pages 384
– 391. International Society for Optics and Photonics,
SPIE.
Moody, A. and Jones, J. A. (2000). Soil response to canopy
position and feral pig disturbance beneath quercus
agrifolia on santa cruz island, california. Applied Soil
Ecology, 14(3):269 – 281.
Munzer, T. (2009). A nested model for visualization design
and validation. IEEE Transactions on Visualization
and Computer Graphics, 15(6):921–928.
Murphy, R. F., Kou, Z., Hua, J., Joffe, M., and Cohen,
W. W. (2004). Extracting and structuring subcellu-
lar location information from on-line journal articles:
The subcellular location image finder. In Proceedings
of the IASTED International Conference on Knowl-
edge Sharing and Collaborative Engineering, pages
109–114.
Rafkind, B., Lee, M., Chang, S.-F., and Yu, H. (2006).
Exploring text and image features to classify im-
ages in bioscience literature. In Proceedings of the
HLT-NAACL BioNLP Workshop on Linking Natural
Language and Biology, LNLBioNLP ’06, pages 73–
80, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.
Ramos, J. et al. (2003). Using tf-idf to determine word rele-
vance in document queries. In Proceedings of the first
instructional conference on machine learning, volume
242, pages 133–142. Piscataway, NJ.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L. (2018). Inverted residuals and linear bottle-
necks: Mobile networks for classification, detection
and segmentation. arXiv preprint arXiv:1801.04381.
Savva, M., Kong, N., Chhajta, A., Fei-Fei, L., Agrawala,
M., and Heer, J. (2011). Revision: Automated clas-
sification, analysis and redesign of chart images. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology, pages 393–
402. ACM.
Sebastiani, F. (2002). Machine learning in automated
text categorization. ACM computing surveys (CSUR),
34(1):1–47.
Srihari, R. K. (1991). Piction: A system that uses captions
to label human faces in newspaper photographs. In
AAAI, pages 80–85.
Xu, S., McCusker, J., and Krauthammer, M. (2008). Yale
image finder (yif): a new search engine for retriev-
ing biomedical images. Bioinformatics, 24(17):1968–
1970.
APPENDIX
Appendix and scripts are available online at:
https://github.com/fusion-jena/Biodiv-Visualization-
Classifier
IVAPP 2020 - 11th International Conference on Information Visualization Theory and Applications
168