D
¨
urst, M. J. (1988). Re: Additional reference to ”marching
cubes”. SIGGRAPH Comput. Graph., 22(5):243–.
Etiene, T., Nonato, L. G., Scheidegger, C., Tienry, J., Pe-
ters, T. J., Pascucci, V., Kirby, R. M., and Silva, C. T.
(2012). Topology verification for isosurface extrac-
tion. IEEE Transactions on Visualization and Com-
puter Graphics, 18(6):952–965.
Freitag, L. A. and Knupp, P. M. (2002). Tetrahedral mesh
improvement via optimization of the element condi-
tion number.
Gibson, S. F. F. (1998). Constrained elastic surface nets:
Generating smooth surfaces from binary segmented
data. In Medical Image Computing and Computer-
Assisted Intervention — MICCAI’98, pages 888–898,
Berlin, Heidelberg. Springer Berlin Heidelberg.
Grosso, R. (2016a). Construction of topologically correct
and manifold isosurfaces. Computer Graphics Forum,
35(5):187–196.
Grosso, R. (2016b). tmc. https://github.com/
rogrosso/tmc.
Grosso, R. (2017). An asymptotic decider for robust and
topologically correct triangulation of isosurfaces. In
Proceedings of the Computer Graphics International
Conference, CGI ’17, pages 39:1–39:5, New York,
NY, USA. ACM.
Ju, T., Losasso, F., Schaefer, S., and Warren, J. (2002).
Dual contouring of hermite data. In Proceedings of
the 29th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH 2002), pages
339–346. ACM Press.
Kazhdan, M., Klein, A., Dalal, K., and Hoppe, H. (2007).
Unconstrained isosurface extraction on arbitrary oc-
trees. In Proceedings of the Fifth Eurographics Sym-
posium on Geometry Processing, pages 125–133.
Lewiner, T., Lopes, H., Vieira, A. W., and Tavares, G.
(2003). Efficient implementation of marching cubes’
cases with topological guarantees. Journal of Graph-
ics Tools, 8(2):1–15.
L
¨
offler, F. and Schumann, H. (2012). Generating smooth
high-quality isosurfaces for interactive modeling and
visualization of complex terrains. In VMV.
Lopes, A. and Brodlie, K. (2003). Improving the robust-
ness and accuracy of the marching cubes algorithm
for isosurfacing. IEEE Transactions on Visualization
and Computer Graphics, 9:2003.
Lorensen, W. E. and Cline, H. E. (1987). Marching cubes:
A high resolution 3d surface construction algorithm.
SIGGRAPH Comput. Graph., 21(4):163–169.
M. Knupp, P. (2000). Achieving finite element mesh qual-
ity via optimization of the jacobian matrix norm and
associated quantities. part i—a framework for sur-
face mesh optimization. Int. J. Numer. Meth. Engng,
48:401–420.
Matveyev, S. V. (1999). Marching cubes: surface complex-
ity measure. In Proceedings of SPIE - The Interna-
tional Society for Optical Engineering, volume 3643,
pages 220–225.
Montani, C., Scateni, R., and Scopigno, R. (1994). A
modified look-up table for implicit disambiguation of
marching cubes. The Visual Computer, 10(6):353–
355.
Natarajan, B. K. (1994). On generating topologically con-
sistent isosurfaces from uniform samples. The Visual
Computer, 11(1):52–62.
Nielson, G. M. (2003). On marching cubes. IEEE
Transactions on Visualization and Computer Graph-
ics, 9(3):283–297.
Nielson, G. M. (2004). Dual marching cubes. In Proceed-
ings of the Conference on Visualization ’04, VIS ’04,
pages 489–496, Washington, DC, USA. IEEE Com-
puter Society.
Nielson, G. M. and Hamann, B. (1991). The asymptotic de-
cider: Resolving the ambiguity in marching cubes. In
Proceedings of the 2Nd Conference on Visualization
’91, VIS ’91, pages 83–91, Los Alamitos, CA, USA.
IEEE Computer Society Press.
Pasko, A., Pilyugin, V., and Pokrovskiy, V. (1988). Geo-
metric modeling in the analysis of trivariate functions.
Computers & Graphics, 12(3):457 – 465.
Rashid, T., Sultana, S., and Audette, M. A. (2016). Water-
tight and 2-manifold surface meshes using dual con-
touring with tetrahedral decomposition of grid cubes.
Procedia Engineering, 163:136 – 148. 25th Interna-
tional Meshing Roundtable.
Renbo, X., Weijun, L., and Yuechao, W. (2005). A ro-
bust and topological correct marching cube algorithm
without look-up table. In Proceedings of the The Fifth
International Conference on Computer and Informa-
tion Technology, CIT ’05, pages 565–569, Washing-
ton, DC, USA. IEEE Computer Society.
Schaefer, S., Ju, T., and Warren, J. (2007). Manifold dual
contouring. IEEE Transactions on Visualization and
Computer Graphics, 13(3).
Schaefer, S. and Warren, J. (2004). Dual marching cubes:
Primal contouring of dual grids. In Computer Graph-
ics and Applications, 2004. PG 2004. 12th Pacific
Conference on, pages 70–76. IEEE Computer Society.
Ulrich, C., Grund, N., Derzapf, E., Lobachev, O., and
Guthe, M. (2014). Parallel iso-surface extraction and
simplification. In WSCG 2014 : Communication
Papers Proceedings, pages 361–368. Vaclav Skala –
Union Agency, Plzen.
Zhang, N., Hong, W., and Kaufman, A. (2004). Dual con-
touring with topology-preserving simplification using
enhanced cell representation. In Proceedings of the
Conference on Visualization ’04, pages 505–512.
GRAPP 2020 - 15th International Conference on Computer Graphics Theory and Applications
112