Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Li,
F.-F. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. In Proc. CVPR, pages 248–255.
Fujita, H., Matsukawa, T., and Suzuki, E. (2019). Detecting
Outliers with One-Class Selective Transfer Machine.
Knowledge and Information Systems. (accepted for
publication).
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A. C., and Ben-
gio, Y. (2014). Generative Adversarial Nets. In Proc.
NIPS, pages 2672–2680.
Johnson, J., Karpathy, A., and Fei-Fei, L. (2016). Dense-
Cap: Fully Convolutional Localization Letworks for
Dense Captioning. In Proc. CVPR, pages 4565–4574.
Kato, H., Harada, T., and Kuniyoshi, Y. (2012). Visual
Anomaly Detection from Small Samples for Mobile
Robots. In Proc. IROS, pages 3171–3178.
Kondo, R., Deguchi, Y., and Suzuki, E. (2014). Developing
a Face Monitoring Robot for a Deskworker. In Am-
bient Intelligence, volume 8850 of LNCS, pages 226–
241. Springer-Verlag.
Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K.,
Kravitz, J., Chen, S., Kalantidis, Y., Li, L. J., Shamma,
D. A., Bernstein, M., and Fei-Fei., L. (2017). Vi-
sual Genome: Connecting Language and Vision Us-
ing Crowdsourced Dense Image Annotations. Inter-
national Journal of Computer Vision, 123(1):32–73.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
ageNet Classification with Deep Convolutional Neu-
ral Networks. In Proc. NIPS, volume 1, pages 1097–
1105.
Lawson, W., Hiatt, L., and K.Sullivan (2016). Detecting
Anomalous Objects on Mobile Platforms. In Proc.
CVPR Workshop.
Lawson, W., Hiatt, L., and K.Sullivan (2017). Finding
Anomalies with Generative Adversarial Networks for
a Patrolbot. In Proc. CVPR Workshop.
Mahadevan, V., Li, W., Bhalodia, V., and Vasconcelos, N.
(2011). Anomaly Detection in Crowded Scenes. In
Proc. CVPR.
Matsumoto, R., Nakayama, H., Harada, T., and Kuniyoshi,
Y. (2007). Journalist Robot: Robot System Making
News Articles from Real World. In Proc. IROS, pages
1234–1241.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Ef-
ficient Estimation of Word Representations in Vector
Space. In Proc. ICLR.
Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng,
A. Y. (2011). Multimodal Deep Learning. In Proc.
ICML, pages 689–696.
Schlegl, T., Seeb
¨
ock, P., Waldstein, S. M., Schmidt-Erfurth,
U., and Langs, G. (2017). Unsupervised Anomaly
Detection with Generative Adversarial Networks to
Guide Marker Discovery. In Proc. International Con-
ference on Information Processing in Medical Imag-
ing.
Simonyan, K. and Zisserman, A. (2015). Very Deep Convo-
lutional Networks for Large-scale Image Recognition.
In Proc. ICLR.
Suzuki, T., Bessho, F., Harada, T., and Kuniyoshi, Y.
(2011). Visual Anomaly Detection under Temporal
and Spatial Non-Uniformity for News Finding Robot.
In Proc. IROS, pages 1214–1220.
Zhang, T., Ramakrishnan, R., and Livny, M. (1997).
BIRCH: A New Data Clustering Algorithm and its
Applications. Data Min. Knowl. Discov., 1(2):141–
182.
Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-
Fei, L., and Farhadi, A. (2017). Target-Driven Visual
Navigation in Indoor Scenes Using Deep Reinforce-
ment Learning. In Proc. ICRA, pages 3357–3364.
Detecting Anomalous Regions from an Image based on Deep Captioning
335