streamline the process of designing and selecting ef-
fective features for shape classification and retrieval.
We demonstrate our work on a real-world 3D shape
database.
Several extensions of this work are possible, as
follows. First and foremost, performing a user study
to gauge how well our approach can support explo-
ration tasks of typical end users, is an important addi-
tion. Secondly, since our approach is generic, it could
be used to optimize feature selection in other applica-
tions beyond CBSR, e.g., in image classification.
REFERENCES
Aim@Shape (2019). Aim@shape digital shape workbench
5.0. http://visionair.ge.imati.cnr.it.
Belongie, S., Malik, J., and Puzicha, J. (2001). Shape con-
text: A new descriptor for shape matching and object
recognition. In Proc. NIPS, pages 831–837.
Bustos, B., Keim, D., Saupe, D., Schreck, T., and Vranic, D.
(2005). Feature-based similarity search in 3D object
databases. ACM Comput Surv, 37(4):345–387.
Cyr, C. M. and Kimia, B. B. (2001). 3D object recognition
using shape similiarity-based aspect graph. In Proc.
IEEE ICCV, pages 254–261.
Espadoto, M., Martins, R., Kerren, A., Hirata, N., and
Telea, A. (2019). Towards a quantitative survey
of dimension reduction techniques. IEEE TVCG.
doi:10.1109/TVCG.2019.2944182.
Feng, C., Jalba, A. C., and Telea, A. C. (2016). Improved
part-based segmentation of voxel shapes by skeleton
cut spaces. Mathematical Morphology –Theory and
Applications, 1(1).
ITI DB (2019). The informatics & telematics institute
database. http://3d-search.iti.gr/3DSearch/index.html.
Jalba, A., Kustra, J., and Telea, A. (2012). Surface and
curve skeletonization of large 3D models on the GPU.
IEEE TPAMI, 35(6):1495–1508.
Jalba, A., Kustra, J., and Telea, A. (2013). Computing sur-
face and curve skeletons from large meshes on the
GPU. IEEE TPAMI, 35(6):783–799.
Kalogerakis, E., Hertzmann, A., and Singh, K. (2010).
Learning 3D mesh segmentation and labeling. ACM
TOG, 29(4).
McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uni-
form manifold approximation and projection for di-
mension reduction. arXiv:1802.03426.
NASA (2019). Nasa 3D resources. https://nasa3d.arc.nasa.
gov.
Paulovich, F. V., Nonato, L. G., Minghim, R., and Lev-
kowitz, H. (2008). Least square projection: A fast
high-precision multidimensional projection technique
and its application to document mapping. IEEE
TVCG, 14(3):564–575.
Peyre, G. and Cohen, L. (2005). Geodesic computations for
fast and accurate surface remeshing and parameteri-
zation. Progress in Nonlinear Differential Equations
and Their Applications, 63:151–171.
Pezzotti, N., Lelieveldt, B. P., van der Maaten, L., H
¨
ollt,
T., Eisemann, E., and Vilanova, A. (2017). Approxi-
mated and user steerable t-SNE for progressive visual
analytics. IEEE TVCG, 23(7):1739–1752.
Rauber, P. E., da Silva, R. R. O., Feringa, S., Celebi, M. E.,
Falc
˜
ao, A. X., and Telea, A. C. (2015). Interactive im-
age feature selection aided by dimensionality reduc-
tion. In Proc. EuroVA, pages 19–23.
Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point
feature histograms (FPFH) for 3D registration. In
Proc. IEEE Intl. Conf. on Robotics and Automation,
pages 3212–3217.
ShapeNet (2019). ShapeNet online repository. https://www.
shapenet.org.
Shapira, L., Shamir, A., and Cohen-Or, D. (2008). Con-
sistent mesh partitioning and skeletonisation using
the shape diameter function. The Visual Computer,
24(4):249–262.
Shen, Y.-T., Chen, D.-Y., Tian, X.-P., and Ouhyoung, M.
(2003). 3D Model Search Engine Based on Lightfield
Descriptors. In Eurographics 2003 - Posters. Euro-
graphics Association.
Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T.
(2004). The Princeton shape benchmark. In Proc.
SMI, pages 167–178. http://shape.cs.princeton.edu/
benchmark.
Shneiderman, B. (1996). The eyes have it: A task by
data type taxonomy for information visualizations. In
Proc. IEEE Symp. on Visual Languages, pages 336–
343.
Shtrom, E., Leifman, G., and Tal, A. (2013). Saliency de-
tection in large point sets. In Proc. IEEE ICCV, pages
3591–3598.
Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E.
(2015). Multi-view convolutional neural networks for
3D shape recognition. In Proc. IEEE ICCV, pages
945–953.
Tangelder, J. and Veltkamp, R. (2008). A survey of content
based 3D shape retrieval methods. Multimedia Tools
and Applications, 39(3):441–471.
Tasse, F., Kosinka, J., and Dodgson, N. (2015). Cluster-
based point set saliency. In Proc. IEEE ICCV, pages
163–171.
Tukey, J. and Tukey, P. (1988). Computer graphics and ex-
ploratory data analysis: An introduction. In The Col-
lected Works of John W. Tukey: Graphics: 1965-1985.
TurboSquid, Inc. (2019). Turbosquid shape repository.
https://www.turbosquid.com.
van der Maaten, L. and Hinton, G. (2008). Visualizing high-
dimensional data using t-SNE. J Mach Learn Res,
(9):2579–2605.
Verma, V. and Snoeyink, J. (2009). Reducing the mem-
ory required to find a geodesic shortest path on a large
mesh. In Proc. ACM GIS, pages 227–235.
Wattenberg, M. (2016). How to use t-SNE effectively. https:
//distill.pub/2016/misread-tsne.
Wilkinson, L., Anand, A., and Grossman, R. (2006). High-
dimensional visual analytics: Interactive exploration
guided by pairwise views of point distributions. IEEE
TVCG, 12(6):1363–1372.
Visual Exploration of 3D Shape Databases Via Feature Selection
53