Arida (2019). Arida systems sp. z o.o. http://arida.pl/ in-
dex.php#products, (accessed: 2019-10).
Bell, S., Upchurch, P., Snavely, N., and Bala, K. (2014).
Material recognition in the wild with the materials in
context database. in IEEE CVPR.
Bhattacharjee, T., Wade, J., and Kemp, C. C. (2015). Mate-
rial recognition from heat transfer given varying initial
conditions and short-duration contact. In Robotics:
Science and Systems.
Caputo, B., Hayman, E., and Mallikarjuna, P. (2005). Class-
specific material categorisation. In Tenth IEEE Inter-
national Conference on Computer Vision (ICCV’05)
Volume 1, volume 2, pages 1597–1604 Vol. 2.
Cawley, G. and Talbot, N. (2007). Preventing over-fitting
during model selection via bayesian regularisation of
the hyper-parameters. Journal of Machine Learning
Research, 8:841–861.
Cawley, G. and Talbot, N. (2010). On over-fitting in
model selection and subsequent selection bias in per-
formance evaluation. Journal of Machine Learning
Research, 11:2079–2107.
Chuang, K.-S. and Huang, H. (2000). Comparison of four
dual energy image decomposition methods. Physics
in Medicine and Biology, 33:455–466.
DetectionTechnology (2019). Dt x-daq 0.8 dualenergy de-
tector documentation. http://www.datvision.co.kr/ up-
load/DT
20121019132944.pdf, (accessed: 2019-10).
Dmitruk, K., Denkowski, M., Mazur, M., and Mikoajczak,
P. (2018). Sharpening filter for false color imaging
of dual-energy x-ray scans. Signal, Image and Video
Processing, 11(4):613–620.
Dmitruk, K., Mazur, M., Denkowski, M., and Mikolajczak,
P. (2015). Method for filling and sharpening false
colour layers of dual energy x-ray images. IFAC-
PapersOnLine, 48:342–347.
Elmasri, K., Hicks, Y., Yang, X., Sun, X., Pettit, R., and
Evans, W. (2016). Automatic detection and quantifi-
cation of abdominal aortic calcification in dual energy
x-ray absorptiometry. 20th International Conference
on Knowledge-Based and Intelligent Information and
Engineering Systems 5-7 September 2016, 96:1011–
1021.
Everingham, M., Gool, L., Williams, C., and J. Winn,
A. Z. (2010). The pascal visual object classes (voc)
challenge. International Journal of Computer Vision,
1(2):303–338.
Gould, S., Fulton, R., and Koller, D. (2009). Decomposing
a scene into geometric and semantically consistent re-
gions. pages 1 – 8.
Ko, B., Kim, S., and Nam, J.-Y. (2011). X-ray image classi-
fication using random forests with local wavelet-based
cs-local binary patterns. Journal of digital imaging :
the official journal of the Society for Computer Appli-
cations in Radiology, 24(6):1141–1151.
Lehmann, L. A., Alvarez, R. E., Macovski, A., Brody,
W. R., Pelc, N. J., Riederer, S. J., and Hall, A. L.
(1981). Generalized image combinations in dual kvp
digital radiography. Medical Physics, 8(5):659–667.
Mehta, S. and Sebro, R. (2019). Random forest clas-
sifiers aid in the detection of incidental osteoblas-
tic osseous metastases in dexa studies. International
Journal of Computer Assisted Radiology and Surgery,
14(5):903–909.
Mery, D., Riffo, V., and Lobel, H. (2015). Gdxray: The
database of x-ray images for nondestructive testing.
Journal of Nondestructive Evaluation, pages 34–42.
Metrix (2019). Metrix sax 1712a lamp documentation.
http://metrixndt.com/generators-brochures/SAXG
%201712A%20v1%20LR.pdf, (accessed: 2019-10).
M.S. Kavitha, A. A., Taguchi, A., Kurita, T., and Sanada,
M. (2012). Diagnosis of osteoporosis from dental
panoramic radiographs using the support vector ma-
chine method in a computer-aided system. BMC Med
Imaging, 12:1011–1021.
Nedjar, I., EL HABIB DAHO, M., Settouti, N., Sad, M.,
and Chikh, M. (2015). Random forest based classifi-
cation of medical x-ray images using a genetic algo-
rithm for feature selection. Journal of Mechanics in
Medicine and Biology, 15(2):1540025.
Ogorodnikov, S., Petrunin, V., and Vorogushin, M. (2002).
Radioscopic discrimination of materials in 1-10 mev
range for customs applications. pages 2807–2809.
Rebuffel, V. and Dinten, J.-M. (2007). Dual-energy
x-ray imaging: Benefits and limits. Insight -
Non-Destructive Testing and Condition Monitoring,
49:589–594.
Russell, B., Torralba, A., Murphy, K., and Freeman, W.
(2008). Labelme: A database and web-based tool for
image annotation. International Journal of Computer
Vision, 77.
Sivakumar, S. and Chandrasekar, C. (2013). Lung nodule
detection using fuzzy clustering and support vector
machines. International Journal of Engineering and
Technology (IJET).
Watabiki, H., Takeda, T., and Mitani, S. (2013). Develop-
ment of dual-energy x-ray inspection system. Anritsu
Technical Review, (20):60–61.
Xiao, J., Ehinger, K., Hays, J., Torralba, A., and Oliva, A.
(2014). Sun database: Exploring a large collection of
scene categories. International Journal of Computer
Vision, 119(1):3–22.
Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva,
A. (2015). Learning deep features for scene recogni-
tion using places database. Advances in Neural Infor-
mation Processing Systems, 1:487–495.