REFERENCES
Alonso, S. G., de la Torre-Díez, I., Hamrioui, S., López-
Coronado, M., Barreno, D. C., Nozaleda, L. M., Franco,
M., 2018. Data Mining Algorithms and Techniques in
Mental Health: A Systematic Review. Journal of
Medical Systems 42. https://doi.org/10.1007/s10916-
018-1018-2
Ankerst, M., Elsen, C., Ester, M., Kriegel, H.-P., 1999.
Visual classification: an interactive approach to
decision tree construction, in: Proceedings of the Fifth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’99.
Presented at the the fifth ACM SIGKDD international
conference, ACM Press, San Diego, California, United
States, pp. 392–396. https://doi.org/10.1145/
312129.312298
Aoki, N., Demsar, J., Zupan, B., Mozina, M., Pretto, E. A.,
Oda, J., Tanaka, H., Sugimoto, K., Yoshioka, T., Fukui,
T., 2007. Predictive Model for Estimating Risk of
Crush Syndrome: A Data Mining Approach: The
Journal of Trauma: Injury, Infection, and Critical Care
62, 940–945. https://doi.org/10.1097/01.ta.
0000229795.01720.1e
Arlot, S., Celisse, A., 2010. A survey of cross-validation
procedures for model selection. Statist. Surv. 4, 40–79.
https://doi.org/10.1214/09-SS054
BaobabView: Interactive construction and analysis of
decision trees - IEEE Conference Publication [WWW
Document], n.d. URL https://ieeexplore.ieee.org/
abstract/document/6102453 (accessed 1.10.19).
Bhuvan, M. S., Kumar, A., Zafar, A., Kishore, V., 2016.
Identifying Diabetic Patients with High Risk of
Readmission. arXiv:1602.04257 [cs].
Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer,
W.P., 2002. SMOTE: synthetic minority over-sampling
technique. Journal of artificial intelligence research 16,
321–357.
Douali, N., Jaulent, M.-C., 2013. Clinical Practice
Guidelines Formalization for Personalized Medicine.
IJAEC 4, 26–33. https://doi.org/10.4018/jaec.
2013070103
Ericsson, A., Huart, A., Ekefjärd, A., Åström, K., Holst, H.,
Evander, E., Wollmer, P., Edenbrandt, L., 2003.
Automated Interpretation of Ventilation-Perfusion
Lung Scintigrams for the Diagnosis of Pulmonary
Embolism Using Support Vector Machines, in: Bigun,
J., Gustavsson, T. (Eds.), Image Analysis, Lecture
Notes in Computer Science. Springer, Berlin,
Heidelberg, pp. 415–421. https://doi.org/10.1007/3-
540-45103-X_56
Hand, D. J., Till, R. J., 2001. A Simple Generalisation of
the Area Under the ROC Curve for Multiple Class
Classification Problems. Machine Learning 45, 171–
186. https://doi.org/10.1023/A:1010920819831
Hornik, K., Buchta, C., Hothorn, T., Karatzoglou, A.,
Meyer, D., Zeileis, A., Hornik, M.K., 2018. Package
‘RWeka.’
Hothorn, T., Zeileis, A., n.d. partykit: A Modular Toolkit
for Recursive Partytioning in R 5.
Isern, D., Moreno, A., 2008. Computer-based execution of
clinical guidelines: A review. International Journal of
Medical Informatics 77, 787–808. https://doi.org/10.
1016/j.ijmedinf.2008.05.010
Kamiński, B., Jakubczyk, M., Szufel, P., 2018. A
framework for sensitivity analysis of decision trees.
Central European Journal of Operations Research 26,
135–159. https://doi.org/10.1007/s10100-017-0479-6
Kaushal, R., Shojania, K. G., Bates, D. W., 2003. Effects of
Computerized Physician Order Entry and Clinical
Decision Support Systems on Medication Safety: A
Systematic Review. Arch Intern Med 163, 1409–1416.
https://doi.org/10.1001/archinte.163.12.1409
Kerexeta, J., Artetxe, A., Escolar, V., Lozano, A., Larburu,
N., 2018. Predicting 30-day Readmission in Heart
Failure Using Machine Learning Techniques, in:
HEALTHINF. Presented at the Healthinf.
Kuhn, M., Weston, S., Culp, M., Coulter, N., Quinlan, R.,
2018. Package ‘C50.’
Kumar, A., Sarkar, B. K., 2018. A Hybrid Predictive Model
Integrating C4.5 and Decision Table Classifiers for
Medical Data Sets. JITR 11, 150–167.
https://doi.org/10.4018/JITR.2018040109
Kwon, J. Y., Karim, M. E., Topaz, M., Currie, L. M., 2019.
Nurses “Seeing Forest for the Trees” in the Age of
Machine Learning: Using Nursing Knowledge to
Improve Relevance and Performance. Comput Inform
Nurs 37, 203–212. https://doi.org/10.1097/CIN.
0000000000000508
Lakshmi, K., Ahmed, D. I., Kumar, G. S., 2018. A Smart
Clinical Decision Support System to Predict diabetes
Disease Using Classification Techniques.
Larburu, N., Artetxe, A., Escolar, V., Lozano, A., Kerexeta,
J., 2018. Artificial Intelligence to Prevent Mobile Heart
Failure Patients Decompensation in Real Time:
Monitoring-Based Predictive Model [WWW
Document]. Mobile Information Systems.
https://doi.org/10.1155/2018/1546210
Nummi, T., 2015. Generalised Linear Models for
Categorical and Continuous Limited Dependent
Variables. International Statistical Review 83, 337–
337. https://doi.org/10.1111/insr.12111_0
Pang, S., Gong, J., 2009. C5.0 Classification Algorithm and
Application on Individual Credit Evaluation of Banks.
Systems Engineering - Theory & Practice 29, 94–104.
https://doi.org/10.1016/S1874-8651(10)60092-0
Podgorelec, V., Kokol, P., Stiglic, B., Rozman, I., 2002.
Decision Trees: An Overview and Their Use in
Medicine. Journal of Medical Systems 26, 445–463.
https://doi.org/10.1023/A:1016409317640
Poucke, S. V., Zhang, Z., Schmitz, M., Vukicevic, M.,
Laenen, M. V., Celi, L. A., Deyne, C. D., 2016. Scalable
Predictive Analysis in Critically Ill Patients Using a
Visual Open Data Analysis Platform. PLOS ONE 11,
e0145791. https://doi.org/10.1371/journal.pone.0145791
PrimeNG [WWW Document], n.d. URL
https://www.primefaces.org/primeng/#/tree (accessed
12.20.18).
Quinlan, J. R., 2014. C4.5: Programs for Machine Learning.
Elsevier.