REFERENCES
Beketayev, K., Weber, G. H., Morozov, D., Abzhanov, A.,
and Hamann, B. (2012). Geometry-preserving topo-
logical landscapes. In Proceedings of the Workshop at
SIGGRAPH Asia, WASA ’12, pages 155–160, New
York, NY, USA. ACM.
Bremer, P., Weber, G., Pascucci, V., Day, M., and Bell, J.
(2010). Analyzing and tracking burning structures in
lean premixed hydrogen flames. IEEE Transactions
on Visualization and Computer Graphics, 16(2):248–
260.
Bruckner, S. and M
¨
oller, T. (2010). Isosurface similar-
ity maps. In Computer Graphics Forum, volume 29,
pages 773–782. Wiley Online Library.
Carr, H., Snoeyink, J., and Axen, U. (2003). Computing
contour trees in all dimensions. Computational Ge-
ometry, 24(2):75–94.
Copernicus Atmosphere Monitoring Service (2018). ERA5
hourly data on pressure levels from 1979 to present.
https://cds.climate.copernicus.eu/.
Doraiswamy, H. and Natarajan, V. (2013). Computing Reeb
graphs as a union of contour trees. IEEE Transactions
on Visualization and Computer Graphics, 19(2):249–
262.
Edelsbrunner, H., Harer, J., Mascarenhas, A., and Pascucci,
V. (2004). Time-varying Reeb graphs for continuous
space-time data. In Proceedings of the twentieth an-
nual symposium on Computational geometry, pages
366–372. ACM.
Fofonov, A. and Linsen, L. (2016). Fast and robust iso-
surface similarity maps extraction using quasi-Monte
Carlo approach. In Wilhelm, A. F. and Kestler, H. A.,
editors, Analysis of Large and Complex Data, pages
497–506. Springer International Publishing.
Hahn, S., Tr
¨
umper, J., Moritz, D., and D
¨
ollner, J. (2014).
Visualization of varying hierarchies by stable layout
of voronoi treemaps. In 2014 International Confer-
ence on Information Visualization Theory and Appli-
cations (IVAPP), pages 50–58.
Harvey, W. and Wang, Y. (2010). Topological landscape
ensembles for visualization of scalar-valued functions.
In Computer Graphics Forum, volume 29, pages 993–
1002. Wiley Online Library.
Heine, C., Schneider, D., Carr, H., and Scheuermann, G.
(2011). Drawing contour trees in the plane. IEEE
Transactions on Visualization and Computer Graph-
ics, 17(11):1599–1611.
K
¨
opp, W. and Weinkauf, T. (2019). Temporal treemaps:
Static visualization of evolving trees. IEEE Transac-
tions on Visualization and Computer Graphics (Proc.
IEEE VIS), 25(1):534–543.
Lukasczyk, J., Maciejewski, R., Weber, G. H., Garth,
C., and Leitte, H. (2017). Nested tracking graphs.
Computer Graphics Forum (Special Issue, Proceed-
ings Eurographics/IEEE Symposium on Visualiza-
tion), 36(3):12–22. Best paper award.
Milnor, J. (2016). Morse Theory.(AM-51), volume 51.
Princeton university press.
Oesterling, P., Heine, C., Weber, G., Morozov, D., and
Scheuermann, G. (2017). Computing and visualizing
time-varying merge trees for high-dimensional data.
In Topological Methods in Data Analysis and Visual-
ization IV, pages 87–101.
Pascucci, V., Cole-McLaughlin, K., and Scorzelli, G.
(2004). Multi-resolution computation and presenta-
tion of contour trees. In Proc. IASTED Conference on
Visualization, Imaging, and Image Processing, pages
452–290. Citeseer.
Pfaffelmoser, T. and Westermann, R. (2013). Visualizing
contour distributions in 2D ensemble data. EuroVis-
Short Papers, 71(72):55–59.
Reeb, G. (1946). Sur les points singuliers d’une forme
de Pfaff completement integrable ou d’une fonction
numerique [on the singular points of a completely
integrable Pfaff form or of a numerical function].
Comptes Rendus Acad. Sciences Paris, 222:847–849.
Scheibel., W., Weyand., C., and D
¨
ollner., J. (2018). Evo-
cells - a treemap layout algorithm for evolving tree
data. In Proceedings of the 13th International Joint
Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications - Volume 3:
IVAPP,, pages 273–280. INSTICC, SciTePress.
Scheidegger, C. E., Schreiner, J. M., Duffy, B., Carr, H.,
and Silva, C. T. (2008). Revisiting histograms and iso-
surface statistics. IEEE Transactions on Visualization
and Computer Graphics, 14(6):1659–1666.
Sohn, B.-S. and Bajaj, C. (2006). Time-varying contour
topology. IEEE Transactions on Visualization and
Computer Graphics, 12(1):14–25.
Sondag, M., Speckmann, B., and Verbeek, K. (2018). Stable
treemaps via local moves. IEEE Transactions on Vi-
sualization and Computer Graphics, 24(1):729–738.
Tierny, J., Favelier, G., Levine, J. A., Gueunet, C., and
Michaux, M. (2018). The topology toolkit. IEEE
transactions on visualization and computer graphics,
24(1):832–842.
Weber, G., Bremer, P., Day, M., Bell, J., and Pascucci, V.
(2011). Feature tracking using Reeb graphs. In Topo-
logical Methods in Data Analysis and Visualization.
Mathematics and Visualization. Springer, Berlin, Hei-
delberg, pages 241–253, Berlin, Heidelberg. Springer
Berlin Heidelberg.
Weber, G., Bremer, P.-T., and Pascucci, V. (2007). Topo-
logical landscapes: A terrain metaphor for scientific
data. IEEE Transactions on Visualization and Com-
puter Graphics, 13(6):1416–1423.
Temporally Coherent Topological Landscapes for Time-varying Scalar Fields
61