Ding, G., Song, Y., Guo, J., Feng, C., Li, G., and He, B.
(2017). Fish Recognition Using Convolutional Neural
Network. Mts, pages 0–3.
French, G., Fisher, M., Mackiewicz, M., and Needle, C.
(2015). Convolutional Neural Networks for Counting
Fish in Fisheries Surveillance Video. Machine Vision
of Animals and their Behaviour Workshop, 7:1–10.
He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017).
Mask R-CNN. IEEE International Conference on
Computer Vision (ICCV), 15:2980–2988.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
Residual Learning for Image Recognition. IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 19:770–778.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. (2014).
Caffe: Convolutional Architecture for Fast Feature
Embedding. International Conference on Multimedia,
22:675–678.
Kingma, D. P. and J., B. L. (2015). Adam: A Method for
Stochastic Optimization. International Conference on
Learning Representations (ICLR), 3:19ff.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. International Conference on Neural Infor-
mation Processing Systems, 25:1097–1105.
Li, X., Shang, M., Qin, H., and Chen, L. (2016). Fast accu-
rate fish detection and recognition of underwater im-
ages with Fast R-CNN. OCEANS 2015 - MTS/IEEE
Washington, pages 1–5.
Mannerla, M., Andersson, M., Birzaks, J., Debowski, P.,
Degerman, E., Huhmarniemi, A., H
¨
aaggstr
¨
om, H.,
Ikonen, E., Jokikokko, E., Jutila, E., Kesler, M.,
Kesminas, V., Kontautas, A., Pedersen, S., Persson, J.,
Romakkaniemi, A., Saura, A., Shibaev, S., Titov, S.,
Tuus, H., Tylik, K., and Yrj
¨
an
¨
a, T. (2011). Salmon and
Sea Trout Populations and Rivers in the Baltic Sea.
Helsinki Commission, 1 edition.
Pedersen, S., Degerman, E., Debowski, P., and Petereit, C.
(2017). Assessment and recruitment status of Baltic
Sea trout populations. Sea Trout: Science & Man-
agement: Proceedings of the International Sea Trout
Symposium, 2:423–441.
Rathi, D., Jain, S., and Indu, S. (2018). Underwater
Fish Species Classification using Convolutional Neu-
ral Network and Deep Learning. International Con-
ference on Advances in Pattern Recognition (ICAPR),
9:344–349.
Ravanbakhsh, M., Shortis, M. R., Shafait, F., Mian, A., Har-
vey, E. S., and Seager, J. W. (2015). Automated Fish
Detection in Underwater Images using Shape-based
Level Sets. Photogrammetric Record, 30:46–62.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You Only Look Once: Unified, Real-Time
Object Detection. IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 19:779–788.
Rova, A., Mori, G., and Dill, L. M. (2007). One fish, two
fish, butterfish, trumpeter: Recognizing fish in under-
water video. IAPR Conference on Machine Vision Ap-
plications (MVA), 7:404–407.
Schwevers, U. and Adam, B. (2020). Fish Protection Tech-
nologies and Fish Ways for Downstream Migration.
Springer International Publishing, 1 edition.
Shafait, F., Mian, A., Shortis, M., Ghanem, B., Culver-
house, P. F., Edgington, D., Cline, D., Ravanbakhsh,
M., Seager, J., and Harvey, E. S. (2016). Fish Iden-
tification from Videos Captured in Uncontrolled Un-
derwater Environments. ICES Journal of Marine Sci-
ence: Journal du Conseil, 73:2737–2746.
Shevchenko, V., Eerola, T., and Kaarna, A. (2018). Fish
Detection from Low Visibility Underwater Videos.
International Conference on Pattern Recognition,
24:1971–1976.
Spampinato, C., Chen-Burger, Y. H., Nadarajan, G., and
Fisher, R. B. (2008). Detecting, Tracking and Count-
ing Fish in Low Quality Unconstrained Underwater
Videos. International Conference on Computer Vision
Theory and Applications (VISAPP), 3:514–519.
Sung, M., Yu, S.-C., and Girdhar, Y. (2017). Vision based
Real-time Fish Detection Using Convolutional Neural
Network. OCEANS, 7:1–6.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2014). Going Deeper with Convolutions.
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 17:1–9.
Villon, S., Chaumont, M., Subsol, G., Vill
´
eger, S., Claverie,
T., and Mouillot, D. (2016). Coral Reef Fish Detec-
tion and Recognition in Underwater Videos by Super-
vised Machine Learning: Comparison between Deep
Learning and HOG+SVM Methods. Lecture Notes in
Computer Science, Artificial Intelligence, and Bioin-
formatics, 10016:160–171.
Winkler, H. M., Hamann, N., and Waterstraat, A. (1991).
Rote Liste der gef
¨
ahrdeten Rundm
¨
auler, S
¨
ußwasser-
und Wanderfischarten Mecklenburg-Vorpommerns.
Umweltministerium Mecklenburg-Vorpommern, 1
edition.
Zhou, B., Khosla, A., A., L., Oliva, A., and Torralba, A.
(2016). Learning Deep Features for Discriminative
Localization. CVPR.
Time-unfolding Object Existence Detection in Low-quality Underwater Videos using Convolutional Neural Networks
377