processing based on 5-second windowed audio clips
for better classification of breathing sounds: normal,
wheezing, crackling and both (wheezing and crack-
ling)
The article was divided into three parts, we de-
scribe the network architecture as well as the crucial
phase of pre-processing and classification. The per-
formance results obtained suggest that CNNs are a
viable tool for detecting specific characteristics in res-
piratory data and are capable of accurately classifying
respiratory sounds inside and outside of laboratory
environments using CNN. This article is expected to
inspire and enable further research in the analysis of
respiratory sounds.
REFERENCES
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al. (2016). Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementa-
tion ({OSDI} 16), pages 265–283.
Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke,
J. F., Jansen, A., Moore, R. C., Plakal, M., Platt, D.,
Saurous, R. A., Seybold, B., Slaney, M., Weiss, R. J.,
and Wilson, K. (2017). Cnn architectures for large-
scale audio classification. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 131–135.
Jeffery, T., Cunningham, S., and Whiteside, S. P. (2018).
Analyses of sustained vowels in down syndrome (ds):
a case study using spectrograms and perturbation data
to investigate voice quality in four adults with ds.
Journal of Voice, 32(5):644–e11.
Kandaswamy, A., Kumar, C. S., Ramanathan, R. P., Jayara-
man, S., and Malmurugan, N. (2004). Neural clas-
sification of lung sounds using wavelet coefficients.
Computers in biology and medicine, 34(6):523–537.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Krawczyk, B. (2016). Learning from imbalanced data: open
challenges and future directions. Progress in Artificial
Intelligence, 5(4):221–232.
Morillo, D. S., Moreno, S. A., Granero, M.
´
A. F., and
Jim
´
enez, A. L. (2013). Computerized analysis of res-
piratory sounds during copd exacerbations. Comput-
ers in biology and medicine, 43(7):914–921.
Moussavi, Z. (2006). Fundamentals of respiratory sounds
and analysis. Synthesis lectures on biomedical engi-
neering, 1(1):1–68.
Naydenova, E. (2018). Machine learning for childhood
pneumonia diagnosis. PhD thesis, University of Ox-
ford.
Ntalampiras, S., . P. I. (2019, May). Classification of sounds
indicative of respiratory diseases. pages 93–103.
Pasterkamp, H., Kraman, S. S., and Wodicka, G. R. (1997).
Respiratory sounds: advances beyond the stethoscope.
American journal of respiratory and critical care
medicine, 156(3):974–987.
Perna, D. (2018). Convolutional neural networks learn-
ing from respiratory data. In 2018 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine
(BIBM), pages 2109–2113. IEEE.
Perna, D. and Tagarelli, A. (2019). Deep auscultation: Pre-
dicting respiratory anomalies and diseases via recur-
rent neural networks. In 2019 IEEE 32nd Interna-
tional Symposium on Computer-Based Medical Sys-
tems (CBMS), pages 50–55. IEEE.
Pramono, R. X. A., Bowyer, S., and Rodriguez-Villegas,
E. (2017). Automatic adventitious respiratory sound
analysis: A systematic review. PLOS ONE, 12(5):1–
43.
Rocha, B., Filos, D., Mendes, L., Vogiatzis, I., Peran-
toni, E., Kaimakamis, E., Natsiavas, P., Oliveira, A.,
J
´
acome, C., Marques, A., et al. (2018a). A res-
piratory sound database for the development of au-
tomated classification. In Precision Medicine Pow-
ered by pHealth and Connected Health, pages 33–37.
Springer.
Rocha, B. M., Filos, D., Mendes, L., Serbes, G., Ulukaya,
S., Kahya, Y. P., Jakovljevic, N., Turukalo, T. L., Vo-
giatzis, I. M., Perantoni, E., Kaimakamis, E., Nat-
siavas, P., Oliveira, A., J
´
acome, C., Marques, A.,
Maglaveras, N., Paiva, R. P., Chouvarda, I., and
de Carvalho, P. (2019). An open access database for
the evaluation of respiratory sound classification algo-
rithms. Physiological Measurement, 40(3):035001.
Rocha, B. M., Filos, D., Mendes, L., Vogiatzis, I., Peran-
toni, E., Kaimakamis, E., Natsiavas, P., Oliveira, A.,
J
´
acome, C., Marques, A., Paiva, R. P., Chouvarda, I.,
Carvalho, P., and Maglaveras, N. (2018b). α respira-
tory sound database for the development of automated
classification. pages 33–37.
Saraiva, A., Ferreira, N., Sousa, L., Carvalho da Costa, N.,
Sousa, J., Santos, D., and Soares, S. (2019a). Classi-
fication of images of childhood pneumonia using con-
volutional neural networks. In 6th International Con-
ference on Bioimaging, pages 112–119.
Saraiva, A., Melo, R., Filipe, V., Sousa, J., Ferreira, N. F.,
and Valente, A. (2018). Mobile multirobot manipula-
tion by image recognition.
Saraiva, A. A., Santos, D. B. S., Costa, N. J. C., Sousa, J.
V. M., Ferreira, N. M. F., Valente, A., and Soares, S.
F. S. P. (2019b). Models of learning to classify x-ray
images for the detection of pneumonia using neural
networks. In BIOIMAGING.
Shahin, M. A., Maier, H. R., and Jaksa, M. B. (2004).
Data division for developing neural networks applied
to geotechnical engineering. Journal of Computing in
Civil Engineering, 18(2):105–114.
SHIRALI-SHAHREZA, M. Hassan; SHIRALI-
SHAHREZA, S. (2010). Effect of mfcc normalization
on vector quantization based speaker identification. In
IEEE International Symposium on Signal Processing
and Information Technology, pages 250–253. IEEE.
Classification of Respiratory Sounds with Convolutional Neural Network
143