study in Hainan. In 2016 2nd IEEE International Con-
ference on Computer and Communications (ICCC),
pages 1524–1529.
Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-
M., and Traver, V. (2015). Process mining methodol-
ogy for health process tracking using real-time indoor
location systems. Sensors, 15(12):29821–29840.
Garaeva, A., Makhmutova, F., Anikin, I., and Sattler, K.
(2017). A framework for co-location patterns min-
ing in big spatial data. In 2017 XX IEEE Interna-
tional Conference on Soft Computing and Measure-
ments (SCM), pages 477–480.
Hwang, I. and Jang, Y. J. (2017). Process Mining to Dis-
cover Shoppers’ Pathways at a Fashion Retail Store
Using a WiFi-Base Indoor Positioning System. IEEE
Transactions on Automation Science and Engineer-
ing, 14(4):1786–1792.
Jin, P., Du, J., Huang, C., Wan, S., and Yue, L. (2015). De-
tecting hotspots from trajectory data in indoor spaces.
In International Conference on Database Systems for
Advanced Applications, pages 209–225. Springer.
Kamel Boulos, M. N. and Berry, G. (2012). Real-time
locating systems (RTLS) in healthcare: a condensed
primer. International Journal of Health Geographics,
11:25.
Lamr, M. and Skrbek, J. (2016). Traffic Data and
Possibilities of Their Utilization for Safer Traf-
fic. Technical Univ Liberec, Faculty Economics.
WOS:000404420200007.
Liao, J., Wang, Z., Wan, L., Cao, Q. C., and Qi, H. (2015).
Smart Diary: A Smartphone-Based Framework for
Sensing, Inferring, and Logging Users’ Daily Life.
IEEE Sensors Journal, 15(5):2761–2773.
Martin, N. (2019). Using Indoor Location System Data
to Enhance the Quality of Healthcare Event Logs:
Opportunities and Challenges. In Daniel, F., Sheng,
Q. Z., and Motahari, H., editors, Business Process
Management Workshops, Lecture Notes in Business
Information Processing, pages 226–238. Springer In-
ternational Publishing.
Martinez-Millana, A., Lizondo, A., Gatta, R., Vera, S., Sal-
cedo, V. T., and Fernandez-Llatas, C. (2019). Process
Mining Dashboard in Operating Rooms: Analysis of
Staff Expectations with Analytic Hierarchy Process.
International Journal of Environmental Research and
Public Health, 16(2).
Mazimpaka, J. D. and Timpf, S. (2016). Trajectory data
mining: A review of methods and applications. Jour-
nal of Spatial Information Science, 2016(13):61–99.
Miclo, R., Fontanili, F., Marqu
`
es, G., Bomert, P., and
Lauras, M. (2015). RTLS-based Process Mining: To-
wards an automatic process diagnosis in healthcare. In
2015 IEEE International Conference on Automation
Science and Engineering (CASE), pages 1397–1402.
Muzammal, M., Gohar, M., Rahman, A. U., Qu, Q., Ah-
mad, A., and Jeon, G. (2018). Trajectory Mining Us-
ing Uncertain Sensor Data. IEEE Access, 6:4895–
4903.
Namaki Araghi, S., Fontanili, F., Lamine, E., Salatge, N.,
Lesbegueries, J., Pouyade, S. R., and Benaben, F.
(2019). Evaluating the Process Capability Ratio of
Patients’ Pathways by the Application of Process Min-
ing, SPC and RTLS. pages 302–309.
Namaki Araghi, S., Fontanili, F., Lamine, E., Salatge, N.,
Lesbegueries, J., Pouyade, S. R., Tancerel, L., and
Benaben, F. (2018a). A Conceptual Framework to
Support Discovering of Patients’ Pathways as Oper-
ational Process Charts. In 2018 IEEE/ACS 15th Inter-
national Conference on Computer Systems and Appli-
cations (AICCSA), pages 1–6.
Namaki Araghi, S., Fontanili., F., Lamine., E., Tancerel., L.,
and Benaben., F. (2018b). Applying process mining
and rtls for modeling, and analyzing patients’ path-
ways. In Proceedings of the 11th International Joint
Conference on Biomedical Engineering Systems and
Technologies - Volume 5: HEALTHINF,, pages 540–
547. INSTICC, SciTePress.
Ramos, J., C
´
esar, A., Neves, J., and Novais, P. (2017).
Adapting the User Path Through Trajectory Data Min-
ing. In De Paz, J. F., Juli
´
an, V., Villarrubia, G.,
Marreiros, G., and Novais, P., editors, Ambient In-
telligence– Software and Applications – 8th Inter-
national Symposium on Ambient Intelligence (ISAmI
2017), Advances in Intelligent Systems and Comput-
ing, pages 195–202. Springer International Publish-
ing.
Rojas, E., Fern
´
andez-Llatas, C., Traver, V., Munoz-Gama,
J., Sep
´
ulveda, M., Herskovic, V., and Capurro, D.
(2017a). Palia-er: Bringing question-driven process
mining closer to the emergency room. In BPM (De-
mos).
Rojas, E., Sep
´
ulveda, M., Munoz-Gama, J., Capurro,
D., Traver, V., and Fernandez-Llatas, C. (2017b).
Question-Driven Methodology for Analyzing Emer-
gency Room Processes Using Process Mining. Ap-
plied Sciences, 7(3):302.
Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J.,
and Mandelbaum, A. (2016). The ROAD from Sen-
sor Data to Process Instances via Interaction Mining.
In Nurcan, S., Soffer, P., Bajec, M., and Eder, J.,
editors, Advanced Information Systems Engineering,
pages 257–273, Cham. Springer International Pub-
lishing.
Sztyler, T., Carmona, J., V
¨
olker, J., and Stuckenschmidt,
H. (2016). Self-tracking reloaded: applying process
mining to personalized health care from labeled sen-
sor data.
Tang, L.-A., Yu, X., Gu, Q., Han, J., Jiang, G., Leung, A.,
and Porta, T. L. (2015). A Framework of Mining Tra-
jectories from Untrustworthy Data in Cyber-Physical
System. ACM Trans. Knowl. Discov. Data, 9(3):16:1–
16:35.
Tanuja, V. and Govindarajulu, P. (2016). Application of
trajectory data mining techniques in crm using move-
ment based community clustering. 16(11):20.
Tanuja, V. and Govindarajulu, P. (2017). A novel frame-
work for geo-clustering of user movements based on
trajectory data. 17(3):212.
Wan, N., Kan, G. L., and Wilson, G. (2017). Addressing
location uncertainties in GPS-based activity monitor-
ing: A methodological framework. Transactions in
GIS, 21(4):764–781.
Weijters, A., van der Aalst, W. M. P., and De Medeiros,
HEALTHINF 2020 - 13th International Conference on Health Informatics
480