5 CONCLUSIONS
In conclusion blue light stimulation inside blind-spot
and outside blind-spot in the peripheral retina
revealed a comparable PIPR, although there are no
rods and cones in the optic disc. In the absence of
classical photoreceptors, melanopsin seems to be
responsible for pupil constriction when light is shone
in the blind-spot. This supports the presence of
melanopsin on the axons of ipRGCs at the head of
optic nerve, which can constitute potential
applications of stimulating melanopsin with visible
light, although invisible to the observer.
ACKNOWLEDGEMENTS
This work was supported by the Federal Ministry of
Education and Research, Industrie-in-Klinik-
Plattform Program BMBF, Germany (FKZ:
13GW0256). MS was supported by the DFG grant
[NU 265/3-1] to HCN. MS and HCN are members of
the LEAD Research Network [GSC1028], which is
funded within the framework of the Excellence
Initiative of the German federal and state
governments. We would like to thank Zoë Kirste for
language proofreading.
REFERENCES
Adhikari, P., Feigl, B., & Zele, A. J. (2016). Rhodopsin and
melanopsin contributions to the early redilation phase
of the post-illumination pupil response (PIPR). PLoS
One, 11(8), e0161175.
Adhikari, P., Zele, A. J., & Feigl, B. (2015). The post-
illumination pupil response (PIPR). Investigative
Ophthalmology & Visual Science, 56(6), 3838–3849.
Alpern, M., & Campbell, F. W. (1962). The spectral
sensitivity of the consensual light reflex. The Journal of
Physiology, 164(3), 478–507.
Bach, M. (2006). The Freiburg Visual Acuity Test-
variability unchanged by post-hoc re-analysis. Graefe’s
Archive for Clinical and Experimental Ophthalmology,
245(7), 965–971.
Berson, D. M., Dunn, F. A., & Takao, M. (2002).
Phototransduction by retinal ganglion cells that set the
circadian clock. Science, 295(5557), 1070–1073.
Dacey, D. M., Liao, H.-W., Peterson, B. B., Robinson, F.
R., Smith, V. C., Pokorny, J., … Gamlin, P. D. (2005).
Melanopsin-expressing ganglion cells in primate retina
signal colour and irradiance and project to the LGN.
Nature, 433(7027), 749.
Fu, Y., Zhong, H., Wang, M. H., Luo, D., Liao, H., Maeda,
H., … Yau, K. (2005). Intrinsically Photosensitive
Retinal Ganglion Cells Detect Light With a Vitamin A–
Based Photopigment That is Most Likely Melanopsin.
Investigative Ophthalmology & Visual Science, 46(13),
2238.
Gamlin, P. D. R., McDougal, D. H., Pokorny, J., Smith, V.
C., Yau, K.-W., & Dacey, D. M. (2007). Human and
macaque pupil responses driven by melanopsin-
containing retinal ganglion cells. Vision Research,
47(7), 946–954.
Hattar, S., Liao, H.-W., Takao, M., Berson, D. M., & Yau,
K.-W. (2002). Melanopsin-containing retinal ganglion
cells: architecture, projections, and intrinsic
photosensitivity. Science, 295(5557), 1065–1070.
Hattar, S., Lucas, R. J., Mrosovsky, N., Thompson, S.,
Douglas, R. H., Hankins, M. W., … Foster, R. G.
(2003). Melanopsin and rod–cone photoreceptive
systems account for all major accessory visual
functions in mice. Nature, 424(6944), 75.
Hess, C. v. (1908). Untersuchungen zur Physiologie und
Pathologie des Pupillenspieles. Arch. f. Augenheilk, 60,
327–389.
John W. Eaton, David Bateman, Søren Hauberg, R. W.
(2018). GNU Octave version 4.4.1 manual: a high-level
interactive language for numerical computations.
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal
of the American Statistical Association, 90(430), 773–
795.
Kelbsch, C., Strasser, T., Chen, Y., Feigl, B., Gamlin, P. D.,
Kardon, R., … Szabadi, E. (2019). Standards in
pupillography. Frontiers in Neurology, 10.
Liao, H., Ren, X., Peterson, B. B., Marshak, D. W., Yau,
K., Gamlin, P. D., & Dacey, D. M. (2016). Melanopsin-
expressing ganglion cells on macaque and human
retinas form two morphologically distinct populations.
Journal of Comparative Neurology, 524(14), 2845–
2872.
Lucas, R. J., Douglas, R. H., & Foster, R. G. (2001).
Characterization of an ocular photopigment capable of
driving pupillary constriction in mice. Nature
Neuroscience, 4(6), 621.
Lucas, R. J., Hattar, S., Takao, M., Berson, D. M., Foster,
R. G., & Yau, K.-W. (2003). Diminished pupillary light
reflex at high irradiances in melanopsin-knockout mice.
Science, 299(5604), 245–247.
Miyamoto, K., & Murakami, I. (2015). Pupillary light
reflex to light inside the natural blind spot. Scientific
Reports, 5, 11862.
Münch, M., Léon, L., Crippa, S. V, & Kawasaki, A. (2012).
Circadian and wake-dependent effects on the pupil light
reflex in response to narrow-bandwidth light pulses.
Investigative Ophthalmology & Visual Science, 53(8),
4546–4555.
Mure, L. S., Cornut, P.-L., Rieux, C., Drouyer, E., Denis,
P., Gronfier, C., & Cooper, H. M. (2009). Melanopsin
bistability: a fly’s eye technology in the human retina.
PLoS One, 4(6), e5991.
Nasir-Ahmad, S., Lee, S. C. S., Martin, P. R., & Grünert,
U. (2019). Melanopsin-expressing ganglion cells in
human retina: Morphology, distribution, and synaptic
connections. Journal of Comparative Neurology,
527(1), 312–327.