phy Techniques. Journal of Infrared, Millimeter and
Terahertz Waves, 35(4):382–411.
Hu, B. B. and Nuss, M. C. (1995). Imaging with Terahertz
Waves. Optics Letters, 20(16):1716–1718.
Kemp, M. C., Taday, P. F., Cole, B. E., Cluff, J. A., Fitzger-
ald, A. J., and Tribe, W. R. (2003). Security Applica-
tions of Terahertz Technology. In Terahertz for Mil-
itary and Security Applications, volume 5070, pages
44–52.
Kingma, D. P. and Ba, J. (2014). Adam: A
Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.
Krishnan, D. and Fergus, R. (2009). Fast Image Deconvo-
lution using Hyper-Laplacian Priors. In Advances in
Neural Information Processing Systems, pages 1033–
1041.
LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep
Learning. Nature, 521(7553):436–444.
Lemley, J., Bazrafkan, S., and Corcoran, P. (2017). Deep
Learning for Consumer Devices and Services: Push-
ing the limits for machine learning, artificial intelli-
gence, and computer vision. IEEE Consumer Elec-
tronics Magazine, 6(2):48–56.
Lucy, L. B. (1974). An Iterative Technique for the Recti-
fication of Observed Distributions. The Astronomical
Journal, 79(6):745–754.
Mallat, S. (2008). A Wavelet Tour of Signal Processing,
Third Edition: The Sparse Way. Academic Press, Inc.,
Orlando, FL, USA, 3rd edition.
Mukherjee, S., Federici, J., Lopes, P., and Cabral, M.
(2013). Elimination of Fresnel Reflection Boundary
Effects and Beam Steering in Pulsed Terahertz Com-
puted Tomography. Journal of Infrared, Millimeter,
and Terahertz Waves, 34(9):539–555.
Nadar, S., Videlier, H., Coquillat, D., Teppe, F., Sakow-
icz, M., Dyakonova, N., Knap, W., Seliuta, D., and
Ka
ˇ
salynas, I. (2010). Room Temperature Imaging at
1.63 and 2.54 THz with Field Effect Transistor Detec-
tors. Journal of Applied Physics, 108(5):054508.
Popescu, D. C. and Hellicar, A. D. (2010). Point Spread
Function Estimation for a Terahertz Imaging System.
EURASIP Journal on Advances in Signal Processing,
2010(1):575817.
Recur, B., Guillet, J. P., Manek-H
¨
onninger, I., Delagnes,
J. C., Benharbone, W., Desbarats, P., Domenger, J. P.,
Canioni, L., and Mounaix, P. (2012). Propagation
Beam Consideration for 3D THz Computed Tomog-
raphy. Optics Express, 20(6):5817–5829.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You Only Look Once: Unified, Real-Time
Object Detection. In Proceedings of the IEEE Con-
ference on Computer Vision and PatternRecognition,
pages 779–788.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-
CNN: Towards Real-Time Object Detection with Re-
gion Proposal Networks. In Advances in Neural Infor-
mation Processing Systems, pages 91–99.
Richardson, W. H. (1972). Bayesian-Based Iterative
Method of Image Restoration. Journal of the Optical
Society of America, 62(1):55–59.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net:
Convolutional Networks for Biomedical Image Seg-
mentation. In International Conference on Medical
Image Computing and Computer-Assisted Interven-
tion, pages 234–241.
Tao, X., Gao, H., Shen, X., Wang, J., and Jia, J. (2018).
Scale-Recurrent Network for Deep Image Deblurring.
In Conference on Computer Vision and Pattern Recog-
nition, pages 8174–8182.
Tepe, J., Schuster, T., and Littau, B. (2017). A Modified Al-
gebraic Reconstruction Technique Taking Refraction
Into Account with an Application in Terahertz Tomog-
raphy. Inverse Problems in Science and Engineering,
25(10):1448–1473.
Varkarakis, V., Bazrafkan, S., and Corcoran, P. (2020).
Deep Neural Network and Data Augmentation
Methodology for Off-Axis Iris Segmentation in Wear-
able Headsets. Neural Networks, 121:101–121.
Voulodimos, A., Doulamis, N., Doulamis, A., and Protopa-
padakis, E. (2018). Deep Learning for Computer Vi-
sion: A Brief Review. Computational Intelligence and
Neuroscience, 2018:1–13.
Xu, L., Ren, J. S. J., Liu, C., and Jia, J. (2014a). Deep
Convolutional Neural Network for Image Deconvolu-
tion. In Advances in Neural Information Processing
Systems 27, pages 1790–1798. Curran Associates, Inc.
Xu, L.-M., Fan, W., and Liu, J. (2014b). High-Resolution
Reconstruction for Terahertz Imaging. Applied Op-
tics, 53(33):7891–7897.
Zhang, J., Pan, J., Ren, J., Song, Y., Bao, L., Lau, R. W. H.,
and Yang, M. (2018). Dynamic Scene Deblurring Us-
ing Spatially Variant Recurrent Neural Networks. In
2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2521–2529.
Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L.
(2017). Beyond a Gaussian Denoiser: Residual Learn-
ing of Deep CNN for Image Denoising. IEEE Trans-
actions on Image Processing, 26(7):3142–3155.
Zhuang, L. and Bioucas-Dias, J. M. (2018). Fast Hyper-
spectral Image Denoising and Inpainting Based on
Low-Rank and Sparse Representations. IEEE Jour-
nal of Selected Topics in Applied Earth Observations
and Remote Sensing, 11(3):730–742.