Gordon, A. D. (1987). A review of hierarchical
classification. Journal of the Royal Statistical Society:
Series A (General), 150(2), 119-137.
Hammond, S. M. (2015). An overview of microRNAs.
Advanced Drug Delivery Reviews, 87, 3–14.
https://doi.org/10.1016/j.addr.2015.05.001
Hamzeiy, H., Suluyayla, R., Brinkrolf, C., Janowski, S. J.,
Hofestaedt, R., & Allmer, J. (2017). Visualization and
Analysis of MicroRNAs within KEGG Pathways using
VANESA. Journal of Integrative Bioinformatics,
14(1). https://doi.org/10.1515/jib-2016-0004
Kiritchenko, S., Matwin, S., Nock, R., & Famili, A. F.
(2006). Learning and Evaluation in the Presence of
Class Hierarchies: Application to Text Categorization.
In L. Lamontagne & M. Marchand (Eds.), Advances in
Artificial Intelligence (pp. 395–406). Springer Berlin /
Heidelberg.
Kozomara, A., & Griffiths-Jones, S. (2011). miRBase:
integrating microRNA annotation and deep-sequencing
data. Nucleic Acids Research, 39 (Database issue),
D152-7. https://doi.org/10.1093/nar/gkq1027
Kurtz, S., Narechania, A., Stein, J. C., & Ware, D. (2008).
A new method to compute K-mer frequencies and its
application to annotate large repetitive plant genomes.
BMC Genomics, 9(1), 517. https://doi.org/10.1186/
1471-2164-9-517
Meng, Y., Shao, C., Wang, H., & Chen, M. (2012). Are all
the miRBase-registered microRNAs true? A structure-
and expression-based re-examination in plants. RNA
Biology, 9(3), 249–253. https://doi.org/10.4161/
rna.19230
Rodriguez, A. (2004). Identification of Mammalian
microRNA Host Genes and Transcription Units.
Genome Research, 14(10a), 1902–1910. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/15364901
Saçar Demirci, M. D., Baumbach, J., & Allmer, J. (2017).
On the performance of pre-microRNA detection
algorithms. Nature Communications, 8(1), 330.
https://doi.org/10.1038/s41467-017-00403-z
Saçar, M. D., & Allmer, J. (2014). Machine learning
methods for microRNA gene prediction. Methods in
Molecular Biology (Clifton, N.J.). https://doi.org/
10.1007/978-1-62703-748-8_10
Saçar, M. D., Hamzeiy, H., & Allmer, J. (2013). Can
MiRBase provide positive data for machine learning for
the detection of MiRNA hairpins? Journal of
Integrative Bioinformatics, 10(2), 215.
https://doi.org/10.2390/biecoll-jib-2013-215
Sempere, L. F., Cole, C. N., Mcpeek, M. A., & Peterson, K.
J. (2006). The phylogenetic distribution of metazoan
microRNAs: insights into evolutionary complexity and
constraint. Journal of Experimental Zoology Part B:
Molecular and Developmental Evolution, 306B
(6),
575–588. https://doi.org/10.1002/jez.b.21118
Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S.,
Osada, H., Endoh, H., … Takahashi, T. (2004).
Reduced expression of the let-7 microRNAs in human
lung cancers in association with shortened
postoperative survival. Cancer Res, 64(11), 3753–
3756. https://doi.org/10.1158/0008-5472.CAN-04-
0637
Tanzer, A., & Stadler, P. F. (2004). Molecular evolution of
a microRNA cluster. Journal of Molecular Biology,
339(2), 327–335. https://doi.org/10.1016/j.jmb.2004.
03.065
Tin Kam Ho. (1995). Random decision forests. In
Proceedings of 3rd International Conference on
Document Analysis and Recognition (Vol. 1, pp. 278–
282). Montreal, Canada: IEEE Comput. Soc. Press.
https://doi.org/10.1109/ICDAR.1995.598994
Tüfekci, K. U., Oner, M. G., Meuwissen, R. L. J., & Genç,
S. (2014). The role of microRNAs in human diseases.
Methods in Molecular Biology (Clifton, N.J.), 1107,
33–50. https://doi.org/10.1007/978-1-62703-748-8_3
Xu, Q.-S., & Liang, Y.-Z. (2001). Monte Carlo cross
validation. Chemometrics and Intelligent Laboratory
Systems, 56(1), 1–11.
Yousef, M., Khalifa, W., Acar, E., & Allmer, J. (2017).
MicroRNA categorization using sequence motifs and k-
mers. BMC Bioinformatics, 18(1). https://doi.org/
10.1186/s12859-017-1584-1
Yousef, M., Nigatu, D., Levy, D., Allmer, J., & Henkel, W.
(2017). Categorization of species based on their
microRNAs employing sequence motifs, information-
theoretic sequence feature extraction, and k-mers.
Eurasip Journal on Advances in Signal Processing,
2017(1). https://doi.org/10.1186/s13634-017-0506-8
Yousef, Malik. (2019). Hamming Distance and K-mer
Features for Classification of Pre-cursor microRNAs
from Different Species. In C. Benavente-Peces, S. Ben
Slama, & B. Zafar (Eds.), Proceedings of the 1st
International Conference on Smart Innovation,
Ergonomics and Applied Human Factors (SEAHF) (pp.
180–189). Cham: Springer International Publishing.
Yousef, Malik, & Allmer, J. (2019). Classification of Pre-
cursor microRNAs from Different Species Using a New
Set of Features BT - Database and Expert Systems
Applications. In G. Anderst-Kotsis, A. M. Tjoa, & I.
Khalil (Eds.) (pp. 15–20). Cham: Springer International
Publishing.
Zhang, B., Pan, X., Cannon, C. H., Cobb, G. P., &
Anderson, T. A. (2006). Conservation and divergence
of plant microRNA genes. The Plant Journal, 46(2),
243–259.