Evans, G., Miller, J., Pena, M. I., MacAllister, A., and
Winer, E. (2017). Evaluating the microsoft hololens
through an augmented reality assembly application.
In Degraded Environments: Sensing, Processing, and
Display, volume 10197.
Everingham, M., Van Gool, L., Williams, C. K. I., Winn,
J., and Zisserman, A. (2010). The pascal visual object
classes (voc) challenge. IJCV, 88(2):303–338.
Gavish, N., Guti
´
errez, T., Webel, S., Rodr
´
ıguez, J., Peveri,
M., Bockholt, U., and Tecchia, F. (2015). Evaluating
virtual reality and augmented reality training for in-
dustrial maintenance and assembly tasks. Interactive
Learning Environments, 23(6):778–798.
Hinterstoisser, S., Benhimane, S., Lepetit, V., Fua, P., and
Navab, N. (2008). Simultaneous recognition and ho-
mography extraction of local patches with a simple
linear classifier. In BMVC.
Hinterstoisser, S., Lepetit, V., Wohlhart, P., and Konolige,
K. (2018). On pre-trained image features and syn-
thetic images for deep learning. In ECCV Workshops.
Inoue, T., Choudhury, S., De Magistris, G., and Dasgupta,
S. (2018). Transfer learning from synthetic to real im-
ages using variational autoencoders for precise posi-
tion detection. In IEEE ICIP, pages 2725–2729.
Kehl, W., Manhardt, F., Tombari, F., Ilic, S., and Navab, N.
(2017). Ssd-6d: Making rgb-based 3d detection and
6d pose estimation great again. In ICCV, pages 1521–
1529.
Klein, G. and Murray, D. (2007). Parallel tracking and map-
ping for small AR workspaces. In IEEE/ACM Inter-
national Symposium on Mixed and Augmented Reality
(ISMAR).
Klein, G. and Murray, D. (2009). Simulating low-cost
cameras for augmented reality compositing. IEEE
Transactions on Visualization and Computer Graph-
ics, 16(3):369–380.
Langlois, J., Mouch
`
ere, H., Normand, N., and Viard-
Gaudin, C. (2018). 3d orientation estimation of in-
dustrial parts from 2d images using neural networks.
In ICPRAM, pages 409–416.
Malamas, E. N., Petrakis, E. G. M., Zervakis, M., Petit,
L., and Legat, J.-D. (2003). A survey on industrial vi-
sion systems, applications and tools. Image and Vision
Computing, 21(2):171–188.
Massa, F., Russell, B. C., and Aubry, M. (2016). Deep ex-
emplar 2d-3d detection by adapting from real to ren-
dered views. In CVPR, pages 6024–6033.
Maturana, D. and Scherer, S. (2015). Voxnet: A 3d convolu-
tional neural network for real-time object recognition.
In IROS, pages 922–928.
Nguyen, T.-H.-C., Nebel, J.-C., and Florez-Revuelta, F.
(2016). Recognition of activities of daily living with
egocentric vision: A review. Sensors, 16(1):72.
Peng, X., Sun, B., Ali, K., and Saenko, K. (2015). Learning
deep object detectors from 3d models. In ICCV, pages
1278–1286.
Planche, B., Zakharov, S., Wu, Z., Kosch, H., and Ilic, S.
(2019). Seeing beyond appearance - mapping real im-
ages into geometrical domains for unsupervised cad-
based recognition. In IROS.
Qin, F.-w., Li, L.-y., Gao, S.-m., Yang, X.-l., and Chen, X.
(2014). A deep learning approach to the classifica-
tion of 3d cad models. Journal of Zhejiang University
SCIENCE C, 15(2):91–106.
Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson,
S. (2014). Cnn features off-the-shelf: an astounding
baseline for recognition. In CVPR Workshops, pages
806–813.
Redmon, J., Bochkovskiy, A., and Sinigardi, S. (2019).
Darknet: Yolov3 - neural network for object detection.
https://github.com/AlexeyAB/darknet.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Rozantsev, A., Lepetit, V., and Fua, P. (2015). On rendering
synthetic images for training an object detector. Com-
puter Vision and Image Understanding, 137:24–37.
Sarkar, K., Varanasi, K., Stricker, D., Sarkar, K., Varanasi,
K., and Stricker, D. (2017). Trained 3d models for cnn
based object recognition. In VISAPP, pages 130–137.
Su, H., Qi, C. R., Li, Y., and Guibas, L. J. (2015). Render
for cnn: Viewpoint estimation in images using cnns
trained with rendered 3d model views. In ICCV, pages
2686–2694.
Sundermeyer, M., Marton, Z.-C., Durner, M., Brucker, M.,
and Triebel, R. (2018). Implicit 3d orientation learn-
ing for 6d object detection from rgb images. In ECCV,
pages 699–715.
Toshev, A., Makadia, A., and Daniilidis, K. (2009). Shape-
based object recognition in videos using 3d synthetic
object models. In CVPR, pages 288–295.
Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani,
V., Anil, C., To, T., Cameracci, E., Boochoon, S., and
Birchfield, S. (2018). Training deep networks with
synthetic data: Bridging the reality gap by domain
randomization. In CVPR Workshops, pages 969–977.
Ulrich, M., Steger, C., Baumgartner, A., and Ebner, H.
(2001). Real-time object recognition in digital images
for industrial applications. In 5th Conference on Op-
tical 3-D Measurement Techniques, pages 308–318.
Van Krevelen, D. W. F. and Poelman, R. A survey of aug-
mented reality technologies, applications and limita-
tions. International Journal of Virtual Reality, 9(2).
Wang, P.-S., Sun, C.-Y., Liu, Y., and Tong, X. (2019). Adap-
tive o-cnn: A patch-based deep representation of 3d
shapes. ACM Transactions on Graphics, 37(6):217.
Wohlhart, P. and Lepetit, V. (2015). Learning descriptors for
object recognition and 3d pose estimation. In CVPR,
pages 3109–3118.
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X.,
and Xiao, J. (2015). 3d shapenets: A deep representa-
tion for volumetric shapes. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 1912–1920.
Xiang, Y., Mottaghi, R., and Savarese, S. (2014). Beyond
pascal: A benchmark for 3d object detection in the
wild. In IEEE Winter Conference on Applications of
Computer Vision, pages 75–82.
CAD-based Learning for Egocentric Object Detection in Industrial Context
651