validation of sensory and emotional scales of touch
perception. Attention, Perception, & Psychophysics,
73(2):531–550.
Holliins, M., Faldowski, R., Rao, S., and Young, F. (1993).
Perceptual dimensions of tactile surface texture: A
multidimensional scaling analysis. Perception & psy-
chophysics, 54(6):697–705.
Hollins, M., Bensma
¨
ıa, S., Karlof, K., and Young, F. (2000).
Individual differences in perceptual space for tactile
textures: Evidence from multidimensional scaling.
Perception & Psychophysics, 62(8):1534–1544.
Kalantari, F., Grisoni, L., Giraud, F., and Rekik, Y. (2016).
Finding the minimum perceivable size of a tactile el-
ement on an ultrasonic based haptic tablet. In Pro-
ceedings of the 2016 ACM on Interactive Surfaces and
Spaces, pages 379–384. ACM.
Kalantari, F., Gueorguiev, D., Lank, E., Bremard, N., and
Grisoni, L. (2018a). Exploring fingers’ limitation of
texture density perception on ultrasonic haptic dis-
plays. In International Conference on Human Haptic
Sensing and Touch Enabled Computer Applications,
pages 354–365. Springer.
Kalantari, F., Lank, E., Rekik, Y., Grisoni, L., Giraud, F.,
Rateau, H., Rekik, Y., Lank, E., Grisoni, L., Vezzoli,
E., et al. (2018b). Determining the haptic feedback
position for optimizing the targeting performance on
ultrasonic tactile displays. In IEEE Haptics Sympo-
sium (HAPTICS 2018), San Fransisco, United States.
Levesque, V., Oram, L., MacLean, K., Cockburn, A.,
Marchuk, N. D., Johnson, D., Colgate, J. E., and
Peshkin, M. A. (2011). Enhancing physicality in touch
interaction with programmable friction. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 2481–2490. ACM.
Messaoud, W. B., Bueno, M.-A., and Lemaire-Semail,
B. (2016). Textile fabrics texture: from multi-level
feature extraction to tactile simulation. In Inter-
national Conference on Human Haptic Sensing and
Touch Enabled Computer Applications, pages 294–
303. Springer.
Mullenbach, J., Shultz, C., Colgate, J. E., and Piper, A. M.
(2014). Exploring affective communication through
variable-friction surface haptics. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 3963–3972. ACM.
Okamoto, S., Nagano, H., and Ho, H.-N. (2016). Psy-
chophysical dimensions of material perception and
methods to specify textural space. In Pervasive Hap-
tics, pages 3–20. Springer.
Okamoto, S., Nagano, H., and Yamada, Y. (2013). Psy-
chophysical dimensions of tactile perception of tex-
tures. IEEE Transactions on Haptics, 6(1):81–93.
Picard, D., Dacremont, C., Valentin, D., and Giboreau, A.
(2003). Perceptual dimensions of tactile textures. Acta
psychologica, 114(2):165–184.
Rao, A. R. and Lohse, G. L. (1996). Towards a texture nam-
ing system: Identifying relevant dimensions of tex-
ture. Vision Research, 36(11):1649–1669.
Samur, E., Colgate, J. E., and Peshkin, M. A. (2009). Psy-
chophysical evaluation of a variable friction tactile in-
terface. In Human vision and electronic imaging XIV,
volume 7240, page 72400J. International Society for
Optics and Photonics.
Tiest, W. M. B. and Kappers, A. M. (2006). Analysis of hap-
tic perception of materials by multidimensional scal-
ing and physical measurements of roughness and com-
pressibility. Acta psychologica, 121(1):1–20.
Vezzoli, E., Vidrih, Z., Giamundo, V., Lemaire-Semail,
B., Giraud, F., Rodic, T., Peric, D., and Adams, M.
(2017). Friction reduction through ultrasonic vibra-
tion part 1: Modelling intermittent contact. IEEE
transactions on haptics, 10(2):196–207.
Wilson, G. and Brewster, S. A. (2017). Multi-moji: Com-
bining thermal, vibrotactile & visual stimuli to expand
the affective range of feedback. In Proceedings of the
2017 CHI Conference on Human Factors in Comput-
ing Systems, pages 1743–1755. ACM.
HUCAPP 2020 - 4th International Conference on Human Computer Interaction Theory and Applications
52