Feng, Z., Kittler, J., Awais, M., Huber, P., and Wu, X.
(2018). Wing loss for robust facial landmark local-
isation with convolutional neural networks. In 2018
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Salt Lake City, UT, USA,
July 18-22, 2018. IEEE Computer Society.
Feng, Z.-H., Huber, P., Kittler, J., Christmas, W., and Wu,
X.-J. (2015). Random cascaded-regression copse for
robust facial landmark detection. IEEE Signal Pro-
cessing Letters, 22(1):76–80.
Gonz
´
alez, R. C. and Woods, R. E. (2008). Digital image
processing, 3rd Edition. Pearson Education.
Hassner, T., Harel, S., Paz, E., and Enbar, R. (2015). Ef-
fective face frontalization in unconstrained images.
In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-
12, 2015, pages 4295–4304. IEEE Computer Society.
Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller,
E. (2007). Labeled faces in the wild: A database for
studying face recognition in unconstrained environ-
ments. Technical Report 07-49, University of Mas-
sachusetts, Amherst.
Huber, P., Hu, G., Tena, J. R., Mortazavian, P., Koppen,
W. P., Christmas, W. J., R
¨
atsch, M., and Kittler, J.
(2016). A multiresolution 3d morphable face model
and fitting framework. In Proceedings of the 11th
Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISI-
GRAPP 2016) - Volume 4: VISAPP, Rome, Italy,
February 27-29, 2016., pages 79–86. SciTePress.
Jourabloo, A. and Liu, X. (2017). Pose-invariant face align-
ment via cnn-based dense 3d model fitting. Interna-
tional Journal of Computer Vision, 124(2):187–203.
Kittler, J., Koppen, P., Kopp, P., Huber, P., and R
¨
atsch, M.
(2018). Conformal mapping of a 3d face representa-
tion onto a 2d image for CNN based face recognition.
In 2018 International Conference on Biometrics, ICB
2018, pages 124–131. IEEE.
Klare, B. F., Klein, B., Taborsky, E., Blanton, A., Cheney,
J., Allen, K., Grother, P., Mah, A., Burge, M. J., and
Jain, A. K. (2015). Pushing the frontiers of uncon-
strained face detection and recognition: IARPA janus
benchmark A. In CVPR, pages 1931–1939. IEEE
Computer Society.
Klontz, J. C., Klare, B., Klum, S., Jain, A. K., and Burge,
M. J. (2013). Open source biometric recognition. In
IEEE Sixth International Conference on Biometrics:
Theory, Applications and Systems, BTAS 2013, Ar-
lington, VA, USA, September 29 - October 2, 2013,
pages 1–8. IEEE.
Koppen, P., Feng, Z.-H., Kittler, J., Awais, M., Christmas,
W., Wu, X.-J., and Yin, H.-F. (2018). Gaussian mix-
ture 3d morphable face model. Pattern Recognition,
74:617–628.
Masi, I., Tran, A. T., Hassner, T., Leksut, J. T., and Medioni,
G. G. (2016). Do we really need to collect millions of
faces for effective face recognition? In 14th European
Conference Computer Vision, ECCV 2016, Proceed-
ings, Part V, volume 9909 of Lecture Notes in Com-
puter Science, pages 579–596. Springer.
Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep
face recognition. In Xie, X., Jones, M. W., and Tam,
G. K. L., editors, Proceedings of the British Machine
Vision Conference 2015, BMVC 2015, pages 41.1–
41.12. BMVA Press.
Schroff, F., Kalenichenko, D., and Philbin, J. (2015).
Facenet: A unified embedding for face recognition
and clustering. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, pages
815–823. IEEE Computer Society.
Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
(2017). Inception-v4, inception-resnet and the im-
pact of residual connections on learning. In Singh,
S. P. and Markovitch, S., editors, Proceedings of
the Thirty-First AAAI Conference on Artificial Intel-
ligence, pages 4278–4284. AAAI Press.
Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014).
Deepface: Closing the gap to human-level perfor-
mance in face verification. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2014, pages 1701–1708. IEEE Computer Society.
Wang, D., Otto, C., and Jain, A. K. (2015). Face search at
scale: 80 million gallery. CoRR, abs/1507.07242.
Wang, N., Gao, X., Tao, D., and Li, X. (2014). Facial fea-
ture point detection: A comprehensive survey. CoRR,
abs/1410.1037.
Yi, D., Lei, Z., Liao, S., and Li, S. Z. (2014). Learning face
representation from scratch. CoRR, abs/1411.7923.
Yin, X., Yu, X., Sohn, K., Liu, X., and Chandraker, M.
(2017). Towards large-pose face frontalization in the
wild. In ICCV, pages 4010–4019. IEEE Computer So-
ciety.
Zhang, J., Shan, S., Kan, M., and Chen, X. (2014). Coarse-
to-fine auto-encoder networks (CFAN) for real-time
face alignment. In Fleet, D. J., Pajdla, T., Schiele, B.,
and Tuytelaars, T., editors, Computer Vision - ECCV
2014 - 13th European Conference, Proceedings, Part
II, volume 8690 of Lecture Notes in Computer Sci-
ence, pages 1–16. Springer.
Zhu, X., Lei, Z., Liu, X., Shi, H., and Li, S. Z. (2016).
Face alignment across large poses: A 3d solution. In
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR, 2016, pages 146–155. IEEE
Computer Society.
Zhu, X., Lei, Z., Yan, J., Yi, D., and Li, S. Z. (2015). High-
fidelity pose and expression normalization for face
recognition in the wild. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR, 2015,
pages 787–796. IEEE Computer Society.
Texture-based 3D Face Recognition using Deep Neural Networks for Unconstrained Human-machine Interaction
427