Bariya, P. and Nishino, K. (2010). Scale-hierarchical 3d
object recognition in cluttered scenes. In 2010 IEEE
computer society conference on computer vision and
pattern recognition, pages 1657–1664. IEEE.
Besl, P. J. and McKay, N. D. (1992). A Method for regis-
tration of 3-D shapes. In Sensor Fusion IV: Control
Paradigms and Data Structures, pages 586–607. In-
ternational Society for Optics and Photonics.
Buch, A. G., Kraft, D., Kamarainen, J.-K., Petersen, H. G.,
and Kr
¨
uger, N. (2013). Pose estimation using local
structure-specific shape and appearance context. In
2013 IEEE International Conference on Robotics and
Automation, pages 2080–2087. IEEE.
Coumans, E. (2015). Bullet physics simulation. In ACM
SIGGRAPH 2015 Courses, page 7. ACM.
Guehring, J. (2001). Reliable 3d surface acquisition, regis-
tration and validation using statistical error models. In
Proceedings Third International Conference on 3-D
Digital Imaging and Modeling, pages 224–231. IEEE.
Mahler, J. and Goldberg, K. (2017). Learning deep policies
for robot bin picking by simulating robust grasping
sequences. In Conference on Robot Learning, pages
515–524.
Mian, A. S., Bennamoun, M., and Owens, R. (2006).
Three-dimensional model-based object recognition
and segmentation in cluttered scenes. IEEE trans-
actions on pattern analysis and machine intelligence,
28(10):1584–1601.
Myronenko, A. and Song, X. (2010). Point set registra-
tion: Coherent point drift. IEEE transactions on pat-
tern analysis and machine intelligence, 32(12):2262–
2275.
Paiement, A., Mirmehdi, M., Xie, X., and Hamilton, M. C.
(2016). Registration and modeling from spaced and
misaligned image volumes. IEEE Transactions on Im-
age Processing, 25(9):4379–4393.
Pais, G. D., Miraldo, P., Ramalingam, S., Govindu, V. M.,
Nascimento, J. C., and Chellappa, R. (2019). 3dreg-
net: A deep neural network for 3d point registration.
arXiv preprint arXiv:1904.01701.
Papazov, C. and Burschka, D. (2010). An efficient
ransac for 3d object recognition in noisy and occluded
scenes. In Asian Conference on Computer Vision,
pages 135–148. Springer.
Pappas, I. P., Styner, M., Malik, P., Remonda, L., and
Caversaccio, M. (2005). Automatic method to as-
sess local ct–mr imaging registration accuracy on im-
ages of the head. American journal of neuroradiology,
26(1):137–144.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet:
Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
652–660.
Rabbani, T., Van Den Heuvel, F., and Vosselman, G. (2006).
Segmentation of point clouds using smoothness con-
straints. In ISPRS commission V symposium: image
engineering and vision metrology, pages 248–253. In-
ternational Society for Photogrammetry and Remote
Sensing (ISPRS).
Rogelj, P., Kovacic, S., and Gee, J. C. (2002). Validation of
a nonrigid registration algorithm for multimodal data.
In Medical Imaging 2002: Image Processing, volume
4684, pages 299–308. International Society for Optics
and Photonics.
Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants
of the ICP algorithm. In 3D Digital Imaging and Mod-
eling (3dim), volume vol. 1, pages 145–153.
Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point
feature histograms (fpfh) for 3d registration. In 2009
IEEE International Conference on Robotics and Au-
tomation, pages 3212–3217. IEEE.
Schnabel, J. A., Tanner, C., Smith, A. D. C., Hill, D. L.,
Hawkes, D. J., Leach, M. O., Hayes, C., Degenhard,
A., and Hose, R. (2001). Validation of non-rigid reg-
istration using finite element methods. In Biennial In-
ternational Conference on Information Processing in
Medical Imaging, pages 344–357. Springer.
Schwarz, M., Milan, A., Lenz, C., Munoz, A., Periyasamy,
A. S., Schreiber, M., Sch
¨
uller, S., and Behnke, S.
(2017). Nimbro picking: Versatile part handling
for warehouse automation. In 2017 IEEE Inter-
national Conference on Robotics and Automation
(ICRA), pages 3032–3039. IEEE.
Segal, A. V., Haehnel, D., and Thrun, S. (2009).
Generalized-icp. In Robotics: science and systems,
pages 435–442.
Vo, A.-V., Truong-Hong, L., Laefer, D. F., and Bertolotto,
M. (2015). Octree-based region growing for point
cloud segmentation. ISPRS Journal of Photogramme-
try and Remote Sensing, 104:88–100.
Yang, J., Li, H., Campbell, D., and Jia, Y. (2015). Go-
icp: A globally optimal solution to 3d icp point-set
registration. IEEE transactions on pattern analysis
and machine intelligence, 38(11):2241–2254.
Yu, W., Tannast, M., and Zheng, G. (2017). Non-rigid free-
form 2d–3d registration using a b-spline-based statis-
tical deformation model. Pattern recognition, 63:689–
699.
ValidNet: A Deep Learning Network for Validation of Surface Registration
397