Table 1: MSE loss of the generated images: output per hour and its mean.
model leaf1 leaf2 leaf3 leaf4 leaf5 leaf6 leaf7 leaf8 mean
RGB Channel concat 0.707 1.006 1.009 1.413 1.800 1.867 2.324 2.754 1.610
+ GAN 0.975 1.364 1.371 1.636 2.060 2.348 2.587 2.949 1.911
(10
−2
) 1-layer LSTM 0.866 1.284 1.127 1.759 2.446 2.286 2.228 2.282 1.785
+ GAN 0.913 1.368 1.200 1.692 2.107 2.043 2.256 2.453 1.754
3-layer LSTM 1.629 1.454 1.463 2.182 2.745 2.679 2.912 3.029 2.262
+ GAN 1.564 1.377 1.305 2.053 2.560 2.685 2.993 3.100 2.205
Depth Channel concat 1.846 2.328 2.619 2.998 3.264 3.200 2.751 3.107 2.764
+ GAN 2.994 3.100 3.249 3.292 3.477 3.239 2.577 2.623 3.069
(10
−4
) 1-layer LSTM 1.730 1.998 2.424 2.735 3.305 3.236 2.690 2.567 2.586
+ GAN 1.916 2.072 2.457 2.719 3.344 3.359 3.142 3.408 2.802
3-layer LSTM 1.856 2.108 2.495 2.781 3.331 3.311 2.826 2.817 2.690
+ GAN 2.558 2.665 3.050 3.239 3.687 3.614 3.328 3.495 3.204
REFERENCES
Aich, S. and Stavness, I. (2017). Leaf counting with deep
convolutional and deconvolutional networks. In Pro-
ceedings of the IEEE International Conference on
Computer Vision, pages 2080–2089.
Barron, J. and Liptay, A. (1997). Measuring 3-d plant
growth using optical flow. Bioimaging, 5(2):82–86.
Chen, Y., Ribera, J., Boomsma, C., and Delp, E. (2017). Lo-
cating crop plant centers from uav-based rgb imagery.
In Proceedings of the IEEE International Conference
on Computer Vision, pages 2030–2037.
Fujita, M., Tanabata, T., Urano, K., Kikuchi, S., and Shi-
nozaki, K. (2018). Ripps: a plant phenotyping system
for quantitative evaluation of growth under controlled
environmental stress conditions. Plant and Cell Phys-
iology, 59(10):2030–2038.
Giuffrida, M. V., Minervini, M., and Tsaftaris, S. A. (2016).
Learning to count leaves in rosette plants.
Hartmann, A., Czauderna, T., Hoffmann, R., Stein, N., and
Schreiber, F. (2011). Htpheno: an image analysis
pipeline for high-throughput plant phenotyping. BMC
bioinformatics, 12(1):148.
Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing
the dimensionality of data with neural networks. sci-
ence, 313(5786):504–507.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Isokane, T., Okura, F., Ide, A., Matsushita, Y., and Yagi,
Y. (2018). Probabilistic plant modeling via multi-
view image-to-image translation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2906–2915.
Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Larsen, A. B. L., Sønderby, S. K., Larochelle, H., and
Winther, O. (2015). Autoencoding beyond pixels
using a learned similarity metric. arXiv preprint
arXiv:1512.09300.
MATSUI, T. and EGUCHI, H. (1976). Computer control
of plant growth by image processing. Environment
Control in Biology, 14(1):1–7.
Mutka, A. M. and Bart, R. S. (2015). Image-based pheno-
typing of plant disease symptoms. Frontiers in plant
science, 5:734.
O’Neal, M. E., Landis, D. A., and Isaacs, R. (2002). An
inexpensive, accurate method for measuring leaf area
and defoliation through digital image analysis. Jour-
nal of Economic Entomology, 95(6):1190–1194.
Prasad, A. K., Chai, L., Singh, R. P., and Kafatos, M.
(2006). Crop yield estimation model for iowa using
remote sensing and surface parameters. International
Journal of Applied Earth Observation and Geoinfor-
mation, 8(1):26–33.
Reuter, D. and Robinson, J. B. (1997). Plant analysis: an
interpretation manual. CSIRO publishing.
Sakurai, S., Uchiyama, H., Shimada, A., and Taniguchi, R.-
I. (2019). Plant growth prediction using convolutional
lstm. In 14th International Conference on Computer
Vision Theory and Applications, VISAPP 2019-Part
of the 14th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory
and Applications, VISIGRAPP 2019, pages 105–113.
SciTePress.
Srivastava, N., Mansimov, E., and Salakhudinov, R. (2015).
Unsupervised learning of video representations using
lstms. In International conference on machine learn-
ing, pages 843–852.
Uchiyama, H., Sakurai, S., Mishima, M., Arita, D.,
Okayasu, T., Shimada, A., and Taniguchi, R.-i.
(2017). An easy-to-setup 3d phenotyping platform
for komatsuna dataset. In Proceedings of the IEEE
International Conference on Computer Vision, pages
2038–2045.
Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-
K., and Woo, W.-c. (2015). Convolutional lstm net-
work: A machine learning approach for precipitation
nowcasting. In Advances in neural information pro-
cessing systems, pages 802–810.
Zhu, Y., Aoun, M., Krijn, M., Vanschoren, J., and Campus,
H. T. (2018). Data augmentation using conditional
generative adversarial networks for leaf counting in
arabidopsis plants. In BMVC, page 324.
3D Plant Growth Prediction via Image-to-Image Translation
161