Bommes, D., L
´
evy, B., Pietroni, N., Puppo, E., Silva, C.,
Tarini, M., and Zorin, D. (2013b). Quad-mesh gener-
ation and processing: A survey. Computer Graphics
Forum, 32(6):51–76.
Bommes, D., Zimmer, H., and Kobbelt, L. (2009). Mixed-
integer quadrangulation. ACM Transactions on
Graphics, 28(3):1.
Botsch, M. and Kobbelt, L. (2002). A robust procedure
to eliminate degenerate faces from triangle meshes.
Proc. of Vision, Modeling, and Visualization 01.
Campagna, S., Kobbelt, L., and Seidel, H.-P. (1998). Di-
rected Edges - A Scalable Representation for Triangle
Meshes. Journal of Graphics Tools, 3(4):1–11.
Campen, M., Bommes, D., and Kobbelt, L. (2012). Dual
loops meshing. ACM Transactions on Graphics,
31(4):1–11.
Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and
Hart, J. C. (2006). Spectral surface quadrangulation.
ACM Transactions on Graphics, 25(3):1057.
Dong, S., Kircher, S., and Garland, M. (2005). Har-
monic functions for quadrilateral remeshing of arbi-
trary manifolds. Computer Aided Geometric Design,
22(5):392–423.
Gatzke, T. D. and Grimm, C. M. (2006). Estimating Curva-
ture on Triangular Meshes. International Journal of
Shape Modeling, 12(01):1–28.
Goldfeather, J. and Interrante, V. (2004). A novel cubic-
order algorithm for approximating principal direction
vectors. ACM Transactions on Graphics, 23(1):45–
63.
Halstead, M., Kass, M., and DeRose, T. D. (1993). Ef-
ficient, fair interpolation using Catmull-Clark sur-
faces. In Proceedings of the 20th annual conference
on Computer graphics and interactive techniques -
SIGGRAPH ’93, SIGGRAPH ’93, pages 35–44, New
York, NY, USA. ACM.
Hormann, K. and Greiner, G. (2000). Quadrilateral remesh-
ing. In Proceedings of Vision, Modeling and Vizual-
ization, 2000, pages 153–162.
Jakob, W., Tarini, M., Panozzo, D., and Sorkine-Hornung,
O. (2015). Instant field-aligned meshes. ACM Trans-
actions on Graphics, 34(6):1–15.
K
¨
alberer, F., Nieser, M., and Polthier, K. (2007). Quad-
Cover - Surface Parameterization using Branched
Coverings. Computer Graphics Forum, 26(3):375–
384.
Kovacs, D., Myles, A., and Zorin, D. (2011). Anisotropic
quadrangulation. Computer Aided Geometric Design,
28(8):449–462.
Lai, Y. K., Kobbelt, L., and Hu, S. M. (2010). Feature
aligned quad dominant remeshing using iterative local
updates. CAD Computer Aided Design, 42(2):109–
117.
Liu, Y., Xu, W., Wang, J., Zhu, L., Guo, B., Chen, F., and
Wang, G. (2011). General planar quadrilateral mesh
design using conjugate direction field. ACM Transac-
tions on Graphics, 30(6):1.
Ljung, P., Kr
¨
uger, J., Groller, E., Hadwiger, M., Hansen,
C. D., and Ynnerman, A. (2016). State of the Art
in Transfer Functions for Direct Volume Rendering.
Computer Graphics Forum, 35(3):669–691.
Marinov, M. and Kobbelt, L. (2004). Direct anisotropic
quad-dominant remeshing. In Proceedings - Pacific
Conference on Computer Graphics and Applications,
PG ’04, pages 207–216, Washington, DC, USA. IEEE
Computer Society.
Marinov, M. and Kobbelt, L. (2006). A robust two-step
procedure for quad-dominant remeshing. Computer
Graphics Forum, 25(3):537–546.
Myles, A., Pietroni, N., Kovacs, D., and Zorin, D. (2010).
Feature-aligned T-meshes. ACM SIGGRAPH 2010
papers on - SIGGRAPH ’10, (July 2010):1.
Petitjean, S. (2002). A survey of methods for recovering
quadrics in triangle meshes. ACM Computing Surveys,
34(2):211–262.
Ray, N., Li, W. C., L
´
evy, B., Sheffer, A., and Alliez, P.
(2006). Periodic global parameterization. ACM Trans-
actions on Graphics, 25(4):1460–1485.
Rugis, J. and Klette, R. (2006). A scale invariant sur-
face curvature estimator. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics),
4319 LNCS:138–147.
Thaller, W., Augsd
¨
orfer, U., and Fellner, D. W. (2016).
Procedural mesh features applied to subdivision sur-
faces using graph grammars. Computers and Graph-
ics (Pergamon), 58:184–192.
Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M.
(2006). Designing Quadrangulations with Discrete
Harmonic Forms. In Eurographics Symposium on Ge-
ometry Processing, SGP ’06, pages 201–210, Aire-la-
Ville, Switzerland, Switzerland. Eurographics Associ-
ation.
Zhang, M., Huang, J., Liu, X., and Bao, H. (2010). A wave-
based anisotropic quadrangulation method. ACM
Transactions on Graphics, 29(4):1.
Zhang, M., Huang, J., Liu, X., and Bao, H. (2013).
A divide-and-conquer approach to quad remeshing.
IEEE Transactions on Visualization and Computer
Graphics, 19(6):941–952.
Creating Curvature Adapted Subdivision Control Meshes from Scan Data
159