Brekelmans, M. P., Fens, N., et al. (2016). Smelling the
Diagnosis: The Electronic Nose as Diagnostic Tool in
Inflammatory Arthritis. A Case-Reference Study. (F.
d’Acquisto, Ed.) PLOS ONE, 11(3), e0151715.
Brinkman, P., Wagener, A. H. et al. (2019). Identification
and prospective stability of electronic nose (eNose)–
derived inflammatory phenotypes in patients with
severe asthma. J. of Allergy and Clinical Immunology,
143(5), 1811-1820.e7.
Caccami, M. C., Mulla, M. Y. S. et al. (2018). Design and
Experimentation of a Batteryless On-Skin RFID
Graphene-Oxide Sensor for the Monitoring and
Discrimination of Breath Anomalies. IEEE Sensors
Journal, 18(21), 8893–8901.
Cai, X., Chen, L., et al. (2017). A Prediction Model with a
Combination of Variables for Diagnosis of Lung
Cancer. Medical Science Monitor, 23, 5620–5629.
Cavallo, F., Esposito, D. et al. (2013). Preliminary
evaluation of SensHand V1 in assessing motor skills
performance in Parkinson disease (pp. 1–6). IEEE.
Cha, Y., Seo, J., Kim, J.-S. et al. (2017). Human–computer
interface glove using flexible piezoelectric sensors.
Smart Materials and Structures, 26(5), 057002.
Chan, D. K., Zakko, L., et al. (2017). Breath Testing for
Barrett’s Esophagus Using Exhaled Volatile Organic
Compound Profiling With an Electronic Nose Device.
Gastroenterology, 152(1), 24–26.
Chen, Y., Liu, W. et al. (2015). Hybrid facial image feature
extraction and recognition for non-invasive chronic
fatigue syndrome diagnosis. Computers in Biology and
Medicine, 64, 30–39.
Chitkara, D., & Sharma, R. K. (2016). Voice based
detection of type 2 diabetes mellitus (pp. 83–87). IEEE.
Collings, S., Thompson, O. et al. (2016). Non-Invasive
Detection of Anaemia Using Digital Photographs of the
Conjunctiva. (K. Metze, Ed.)PLOS ONE, 11(4)
Condell, J., Curran, K., et al. (2011). Finger movement
measurements in arthritic patients using wearable
sensor enabled gloves. International Journal of Human
Factors Modelling and Simulation, 2(4), 276.
Cornet, V. P., Holden, R. J. (2018). Systematic review of
smartphone-based passive sensing for health and
wellbeing. J. of Biomedical Informatics, 77, 120–132.
Costantini, G., Casali, D. et al (2018). Towards the
enhancement of body standing balance recovery by
means of a wireless audio-biofeedback system. Medical
Engineering & Physics, 54, 74–81.
D’Amico, A., Pennazza, G. et al. (2010). An investigation
on electronic nose diagnosis of lung cancer. Lung
Cancer, 68(2), 170–176.
Dang, W., Manjakkal, L. et al. (2018). Stretchable wireless
system for sweat pH monitoring. Biosensors and
Bioelectronics, 107, 192–202.
Di Lena, M., Porcelli, F., Altomare, D. F. (2016). Volatile
organic compounds as new biomarkers for colorectal
cancer: A review. Colorectal Disease, 18(7), 654–663.
Dragonieri, S, Annema, JT et al (2009). Electronic nose in
the discrimination of patients with non-small cell lung
cancer & COPD. Lung Cancer, 64(2),166–170.
Dragonieri, S., Brinkman, P. et al. (2013). An electronic
nose discriminates exhaled breath of patients with
untreated pulmonary sarcoidosis from controls.
Respiratory Medicine, 107(7), 1073–1078.
Dragonieri, S. , Porcelli, F. et al. (2015). An electronic nose
in the discrimination of obese patients with and without
obstructive sleep apnoea. Journal of Breath Research,
9(2), 026005.
Dragonieri, S., Quaranta, V. N. et al. (2016). An electronic
nose may sniff out amyotrophic lateral sclerosis.
Respiratory Physiology & Neurobiology, 232, 22–25.
Dragonieri, S., Quaranta, V. N. et al. (2018). The ovarian
cycle may influence the exhaled volatile organic
compound profile analyzed by an electronic nose.
Journal of Breath Research, 12(2), 021002.
Dragonieri, S., Schot, R. et al. (2007). An electronic nose in
the discrimination of patients with asthma and controls.
J. of Allergy & Clinical Imm.,120(4), 856–62
Fitzgerald, J., Fenniri, H. (2017). Cutting Edge Methods for
Non-Invasive Disease Diagnosis Using E-Tongue and
E-Nose Devices. Biosensors, 7(4), 59.
Gardner, JW, Bartlett, PN (1994). A brief history of
electronic noses. Sensors & Actuators B: 18(1), 210.
Gnucci, M., Flemma, M. et al. (2018). Assessment of Gait
Harmony in Older and Young People: (pp. 155–160).
SCITEPRESS - Science and Technology Publications.
Gonzalo-Ruiz, J., Mas, R. et al. (2009). Early determination
of cystic fibrosis by electrochemical chloride
quantification in sweat. Biosensors and Bioelectronics,
24(6), 1788–1791.
Goor, RMG., Hardy, JCA. et al. (2019). Detecting recurrent
head and neck cancer using electronic nose technology:
A feasibility study. Head & Neck, 41(9), 2983–2990.
van de Goor, R., van Hooren, M., etal. (2018). Training and
Validating a Portable Electronic Nose for Lung Cancer
Screening. J. of Thoracic Oncology, 13(5), 676–681.
Gordon, S. M., Wallace, L. A. et al. (2002). Volatile organic
compounds as breath biomarkers for active and passive
smoking. Env. Health Perspectives, 110(7), 689–698.
Grandez, K., Solas, G. et al. (2010). Sensor device for
testing activities in Parkinson and ALS patients. IEEE.
Guidi, A., Schoentgen, J. et al. (2015). Voice quality in
patients suffering from bipolar disease (pp. 6106–
6109). IEEE.
Guo, L., Wang, C. et al. (2015). Exhaled breath volatile
biomarker analysis for thyroid cancer. Translational
Research: The Journal of Laboratory and Clinical
Medicine, 166(2), 188–195.
Hakim, M., Billan, S. et al. (2011). Diagnosis of head-and-
neck cancer from exhaled breath. British Journal of
Cancer, 104(10), 1649–1655.
Hidayat, A. A., Arief, Z. et al. (2015). Mobile application
with simple moving average filtering for monit. finger
muscles therapy of post-stroke people (pp. 1–6). IEEE.
Hsiao, PC., Yang, SY. et al. (2015). Data glove embedded
with 9-axis IMU and force sensing sensors for
evaluation of hand function (pp. 4631–4634). IEEE.
Ionescu, R., Broza, Y. et al. (2011). Detection of Multiple
Sclerosis from Exhaled Breath Using Bilayers of
Polycyclic Aromatic Hydrocarbons and Single-Wall