clouds. The initial experimental evaluation reveals the
promising properties of our proposed model. How-
ever, further investigation into the multi-scale gen-
erative learning methods is needed, including adop-
tion of more recent deep architectures (Zhang et al.,
2019; Uy et al., 2019). Other promising directions
include exploring the limits of the Laplacian pyra-
mid representation and a more extensive experimental
evaluation of our approach. To this end, we plan to
(i) further extend our work, considering deeper pyra-
mid levels and larger upsampling factors (e.g. ×64),
and (ii) conduct a comparative investigation of our
framwork using more challenging tasks such as shape
completion, using deep learning methods, e.g.,. (Yu
et al., 2018b; Yifan et al., 2019; Yu et al., 2018a;
Li et al., 2019; Mandikal and Radhakrishnan, 2019;
Chen et al., 2019).
ACKNOWLEDGEMENT
The work of Youyi Zheng is partially supported
by the National Key Research & Development Pro-
gram of China (2018YFE0100900). The work of
Vage Egiazarian, Alexey Artemov, Oleg Voynov
and Evgeny Burnaev is supported by The Min-
istry of Education and Science of Russian Fed-
eration, grant No. 14.615.21.0004, grant code:
RFMEFI61518X0004. The work of Luiz Velho is
supported by CNPq/MCTIC/BRICS-STI No 29/2017
— Grant No: 442032/2017-0. The authors Vage
Egiazarian, Alexey Artemov, Oleg Voynov, and
Evgeny Burnaev acknowledge the usage of the
Skoltech CDISE HPC cluster Zhores for obtaining re-
sults presented in this paper.
REFERENCES
Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas, L.
(2018). Learning representations and generative mod-
els for 3d point clouds. In ICML, pages 40–49.
Atzmon, M., Maron, H., and Lipman, Y. (2018). Point
convolutional neural networks by extension operators.
ACM ToG, 37(4):71.
Brock, A., Lim, T., Ritchie, J. M., and Weston, N.
(2016). Generative and discriminative voxel modeling
with convolutional neural networks. arXiv preprint
arXiv:1608.04236.
Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan,
P., Huang, Q., Li, Z., Savarese, S., Savva, M.,
Song, S., Su, H., et al. (2015). Shapenet: An
information-rich 3d model repository. arXiv preprint
arXiv:1512.03012.
Chen, X., Chen, B., and Mitra, N. J. (2019). Unpaired point
cloud completion on real scans using adversarial train-
ing. arXiv preprint arXiv:1904.00069.
Denton, E. L., Chintala, S., Fergus, R., et al. (2015). Deep
generative image models using a laplacian pyramid of
adversarial networks. In NIPS, pages 1486–1494.
Fan, H., Su, H., and Guibas, L. J. (2017). A point set gen-
eration network for 3d object reconstruction from a
single image. In CVPR, pages 605–613.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In NIPS,
pages 2672–2680.
Hua, B.-S., Tran, M.-K., and Yeung, S.-K. (2018). Point-
wise convolutional neural networks. In CVPR, pages
984–993.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Li, C.-L., Zaheer, M., Zhang, Y., Poczos, B., and Salakhut-
dinov, R. (2018a). Point cloud gan. arXiv preprint
arXiv:1810.05795.
Li, J., Chen, B. M., and Hee Lee, G. (2018b). So-net: Self-
organizing network for point cloud analysis. In CVPR,
pages 9397–9406.
Li, R., Li, X., Fu, C.-W., Cohen-Or, D., and Heng, P.-A.
(2019). Pu-gan: a point cloud upsampling adversarial
network. In CVPR, pages 7203–7212.
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., and Chen, B.
(2018c). Pointcnn: Convolution on x-transformed
points. In NIPS, pages 820–830.
Lin, C.-H., Kong, C., and Lucey, S. (2018). Learning ef-
ficient point cloud generation for dense 3d object re-
construction. In AAAI.
Mandikal, P. and Radhakrishnan, V. B. (2019). Dense 3d
point cloud reconstruction using a deep pyramid net-
work. In WACV, pages 1052–1060. IEEE.
Mirza, M. and Osindero, S. (2014). Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Nash, C. and Williams, C. K. (2017). The shape varia-
tional autoencoder: A deep generative model of part-
segmented 3d objects. In Computer Graphics Forum,
volume 36, pages 1–12. Wiley Online Library.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Point-
net: Deep learning on point sets for 3d classification
and segmentation. In CVPR, pages 652–660.
Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Point-
net++: Deep hierarchical feature learning on point sets
in a metric space. In NIPS, pages 5099–5108.
Uy, M. A., Pham, Q.-H., Hua, B.-S., Nguyen, T., and Ye-
ung, S.-K. (2019). Revisiting point cloud classifi-
cation: A new benchmark dataset and classification
model on real-world data. In CVPR, pages 1588–
1597.
Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. (2018). Dynamic graph cnn for
learning on point clouds. CoRR, abs/1801.07829.
Latent-space Laplacian Pyramids for Adversarial Representation Learning with 3D Point Clouds
427