5 DISCUSSION
Direct counting models might be useful in clinical
settings. Some potential examples are but not lim-
ited to: monitoring and locating lesions. They can
also aid segmentation by selecting configurations of
segmentation algorithms based on global lesion size,
from raw data, and reducing the required segmenta-
tion area through lesion detection. Further develop-
ments need to be made to predict patch counts, includ-
ing: improving accuracy in the predictions of non-
zero counts, accounting for highly imbalanced zero
counts, developing sampling-based algorithms for le-
sion location detection, and providing aggregate patch
measures to predict global lesion count. This will in-
crease the effectiveness and broaden the applications
of direct counting models.
REFERENCES
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M.,
et al. (2016). Tensorflow: a system for large-scale
machine learning. In OSDI, volume 16, pages 265–
283.
Albert, P. S., McFarland, H. F., Smith, M. E., and Frank,
J. A. (1994). Time series for modelling counts from a
relapsing-remitting disease: application to modelling
disease activity in multiple sclerosis. Statistics in
Medicine, 13(5-7):453–466.
Alexander, L. D., Black, S. E., Gao, F., Szilagyi, G.,
Danells, C. J., and McIlroy, W. E. (2010). Correlat-
ing lesion size and location to deficits after ischemic
stroke: the influence of accounting for altered peri-
necrotic tissue and incidental silent infarcts. Behav-
ioral and brain functions, 6(1):6.
Altman, R. M. and Petkau, A. J. (2005). Application of hid-
den markov models to multiple sclerosis lesion count
data. Statistics in Medicine, 24(15):2335–2344.
Bagnato, F., Ikonomidou, V. N., van Gelderen, P., Auh,
S., Hanafy, J., Cantor, F. K., Ohayon, J., Richert,
N., and Duyn, J. (2011). Lesions by tissue specific
imaging characterize multiple sclerosis patients with
more advanced disease. Multiple Sclerosis Journal,
17(12):1424–1431.
Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M.,
Crimi, A., Shinohara, R. T., Berger, C., Ha, S. M.,
Rozycki, M., et al. (2018). Identifying the best ma-
chine learning algorithms for brain tumor segmen-
tation, progression assessment, and overall survival
prediction in the brats challenge. arXiv preprint
arXiv:1811.02629.
Dubost, F., Bortsova, G., Adams, H., Ikram, A., Niessen,
W. J., Vernooij, M., and De Bruijne, M. (2017). Gp-
unet: Lesion detection from weak labels with a 3d
regression network. In International Conference on
Medical Image Computing and Computer-Assisted In-
tervention, pages 214–221. Springer.
Erskine, M., Cook, L., Riddle, K., Mitchell, J. R., and Kar-
lik, S. J. (2005). Resolution-dependent estimates of
multiple sclerosis lesion loads. Canadian journal of
neurological sciences, 32(2):205–212.
Filippi, M., Horsfield, M., Campi, A., Mammi, S., Pereira,
C., and Comi, G. (1995). Resolution-dependent esti-
mates of lesion volumes in magnetic resonance imag-
ing studies of the brain in multiple sclerosis. Annals
of Neurology: Official Journal of the American Neuro-
logical Association and the Child Neurology Society,
38(5):749–754.
Havaei, M., Davy, A., Warde-Farley, D., Biard, A.,
Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., and
Larochelle, H. (2017). Brain tumor segmentation
with deep neural networks. Medical image analysis,
35:18–31.
Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson,
J. P., Kane, A. D., Menon, D. K., Rueckert, D., and
Glocker, B. (2017). Efficient multi-scale 3D CNN
with fully connected CRF for accurate brain lesion
segmentation. Medical image analysis, 36:61–78.
Lambert, D. (1992). Zero-inflated poisson regression, with
an application to defects in manufacturing. Techno-
metrics, 34(1):1–14.
Maier, O., Menze, B. H., von der Gablentz, J., H
¨
ani, L.,
Heinrich, M. P., Liebrand, M., Winzeck, S., Basit, A.,
Bentley, P., Chen, L., et al. (2017). ISLES 2015 - a
public evaluation benchmark for ischemic stroke le-
sion segmentation from multispectral MRI. Medical
image analysis, 35:250–269.
Merino, J. G., Latour, L. L., Todd, J. W., Luby, M.,
Schellinger, P. D., Kang, D.-W., and Warach, S.
(2007). Lesion volume change after treatment with
tissue plasminogen activator can discriminate clinical
responders from nonresponders. Stroke, 38(11):2919–
2923.
Park, H.-J., Machado, A. G., Cooperrider, J., Truong-
Furmaga, H., Johnson, M., Krishna, V., Chen, Z., and
Gale, J. T. (2013). Semi-automated method for esti-
mating lesion volumes. Journal of neuroscience meth-
ods, 213(1):76–83.
Rivers, C., Wardlaw, J., Armitage, P., Bastin, M., Carpen-
ter, T., Cvoro, V., Hand, P., and Dennis, M. (2006).
Do acute diffusion-and perfusion-weighted mri le-
sions identify final infarct volume in ischemic stroke?
Stroke, 37(1):98–104.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Winzeck, S., Hakim, A., McKinley, R., Pinto, J. A., Alves,
V., Silva, C., Pisov, M., Krivov, E., Belyaev, M.,
Monteiro, M., et al. (2018). ISLES 2016 and 2017-
benchmarking ischemic stroke lesion outcome predic-
tion based on multispectral MRI. Frontiers in neurol-
ogy, 9.
Zivadinov, R., Heininen-Brown, M., Schirda, C. V., Poloni,
G. U., Bergsland, N., Magnano, C. R., Durfee, J.,
Kennedy, C., Carl, E., Hagemeier, J., et al. (2012).
Abnormal subcortical deep-gray matter susceptibility-
weighted imaging filtered phase measurements in pa-
tients with multiple sclerosis: a case-control study.
Neuroimage, 59(1):331–339.
BIOIMAGING 2020 - 7th International Conference on Bioimaging
176