are encouraging and suggest the potential of apply-
ing the proposed method for early risk assessment for
CVD.
ACKNOWLEDGEMENTS
This research is carried out under the project of East-
ern Corridor Medical Engineering Centre (ECME)
and funded by the European Unions INTERREG VA
Programme, managed by the Special EU Programmes
Body (SEUPB).
REFERENCES
Carrio, A., Sampedro, C., Sanchez-Lopez, J., Pimienta,
M., and Campoy, P. (2015). Automated low-cost
smartphone-based lateral flow saliva test reader for
drugs-of-abuse detection. Sensors, 15(11):29569–
29593.
Cheung, S. F., Cheng, S. K., and Kamei, D. T. (2015). based
systems for point-of-care biosensing. Journal of lab-
oratory automation, 20(4):316–333.
Choi, J. R., Hu, J., Feng, S., Abas, W. A. B. W.,
Pingguan-Murphy, B., and Xu, F. (2016). Sen-
sitive biomolecule detection in lateral flow assay
with a portable temperature–humidity control device.
Biosensors and Bioelectronics, 79:98–107.
Eltzov, E., Guttel, S., Low Yuen Kei, A., Sinawang, P. D.,
Ionescu, R. E., and Marks, R. S. (2015). Lateral flow
immunoassays–from paper strip to smartphone tech-
nology. Electroanalysis, 27(9):2116–2130.
Fern
´
andez, S., Graves, A., and Schmidhuber, J. (2007). An
application of recurrent neural networks to discrim-
inative keyword spotting. In International Confer-
ence on Artificial Neural Networks, pages 220–229.
Springer.
Fojt
´
ıkov
´
a, L.,
ˇ
Sul
´
akov
´
a, A., Bla
ˇ
zkov
´
a, M., Holubov
´
a, B.,
Kucha
ˇ
r, M., Mik
ˇ
s
´
atkov
´
a, P., Lap
ˇ
c
´
ık, O., and Fukal, L.
(2018). Lateral flow immunoassay and enzyme linked
immunosorbent assay as effective immunomethods
for the detection of synthetic cannabinoid jwh-200
based on the newly synthesized hapten. Toxicology
reports, 5:65–75.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Hu, J., Wang, L., Li, F., Han, Y. L., Lin, M., Lu, T. J., and
Xu, F. (2013). Oligonucleotide-linked gold nanoparti-
cle aggregates for enhanced sensitivity in lateral flow
assays. Lab on a Chip, 13(22):4352–4357.
Hu, J., Wang, S., Wang, L., Li, F., Pingguan-Murphy, B.,
Lu, T. J., and Xu, F. (2014). Advances in paper-based
point-of-care diagnostics. Biosensors and Bioelec-
tronics, 54:585–597.
Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and
Wu, Y. (2016). Exploring the limits of language mod-
eling. arXiv preprint arXiv:1602.02410.
Mak, W. C., Beni, V., and Turner, A. P. (2016). Lateral-flow
technology: From visual to instrumental. TrAC Trends
in Analytical Chemistry, 79:297–305.
Moghadam, B. Y., Connelly, K. T., and Posner, J. D. (2015).
Two orders of magnitude improvement in detection
limit of lateral flow assays using isotachophoresis. An-
alytical chemistry, 87(2):1009–1017.
Picon, A., Irusta, U.,
´
Alvarez-Gila, A., Aramendi, E.,
Alonso-Atienza, F., Figuera, C., Ayala, U., Garrote,
E., Wik, L., Kramer-Johansen, J., et al. (2019). Mixed
convolutional and long short-term memory network
for the detection of lethal ventricular arrhythmia. PloS
one, 14(5):e0216756.
Quesada-Gonz
´
alez, D. and Merkoc¸i, A. (2017). Mobile
phone-based biosensing: An emerging ”diagnostic
and communication” technology. Biosensors and Bio-
electronics, 92:549–562.
Qureshi, A., Gurbuz, Y., and Niazi, J. H. (2012). Biosensors
for cardiac biomarkers detection: A review. Sensors
and Actuators B: Chemical, 171:62–76.
Ridker, P. M. (2003). Clinical application of c-reactive pro-
tein for cardiovascular disease detection and preven-
tion. Circulation, 107(3):363–369.
Ridker, P. M., Hennekens, C. H., Buring, J. E., and Rifai,
N. (2000). C-reactive protein and other markers of
inflammation in the prediction of cardiovascular dis-
ease in women. New England Journal of Medicine,
342(12):836–843.
Rivas, L., Medina-S
´
anchez, M., de la Escosura-Mu
˜
niz, A.,
and Merkoc¸i, A. (2014). Improving sensitivity of gold
nanoparticle-based lateral flow assays by using wax-
printed pillars as delay barriers of microfluidics. Lab
on a Chip, 14(22):4406–4414.
Torres, J. L. and Ridker, P. M. (2003). High sensitivity c-
reactive protein in clinical practice. American Heart
Hospital Journal, 1(3):207–211.
Xiong, Z., Nash, M. P., Cheng, E., Fedorov, V. V., Stiles,
M. K., and Zhao, J. (2018). Ecg signal classification
for the detection of cardiac arrhythmias using a convo-
lutional recurrent neural network. Physiological mea-
surement, 39(9):094006.
Zeng, N., Wang, Z., Zhang, H., Liu, W., and Alsaadi, F. E.
(2016). Deep belief networks for quantitative analysis
of a gold immunochromatographic strip. Cognitive
Computation, 8(4):684–692.
Detection and Categorisation of Multilevel High-sensitivity Cardiovascular Biomarkers from Lateral Flow Immunoassay Images via
Recurrent Neural Networks
183