Table 3: Evaluation results (BMC dataset).
Measure BMC videos
001 002 003 004 005 006 007 008 009
Recall 0.800 0.689 0.840 0.872 0.861 0.823 0.658 0.589 0.690
RSL De La Torre Precision 0.732 0.808 0.804 0.585 0.598 0.713 0.636 0.526 0.625
(De La Torre and Black, 2003) F-Measure 0.765 0.744 0.821 0.700 0.706 0.764 0.647 0.556 0.656
Recall 0.693 0.535 0.784 0.721 0.643 0.656 0.449 0.621 0.701
LSADM Goldfarb Precision 0.511 0.724 0.802 0.729 0.475 0.655 0.693 0.633 0.809
et al.(Goldfarb et al., 2013) F-Measure 0.591 0.618 0.793 0.725 0.549 0.656 0.551 0.627 0.752
Recall 0.684 0.552 0.761 0.709 0.621 0.670 0.465 0.598 0.700
GoDec Zhou and Tao Precision 0.444 0.682 0.808 0.728 0.462 0.636 0.626 0.601 0.747
(Zhou and Tao, 2011) F-Measure 0.544 0.611 0.784 0.718 0.533 0.653 0.536 0.600 0.723
Recall 0.552 0.697 0.778 0.693 0.611 0.700 0.720 0.515 0.566
Erichson Precision 0.581 0.675 0.773 0.770 0.541 0.602 0.823 0.510 0.574
et al.(Erichson et al., 2016) F-Measure 0.566 0.686 0.776 0.730 0.574 0.647 0.768 0.512 0.570
Recall 0.584 0.732 0.806 0.882 0.493 0.608 0.565 0.456 0.713
dl-DMD (proposed) Precision 0.587 0.784 0.931 0.624 0.591 0.605 0.660 0.552 0.811
F-Measure 0.586 0.757 0.864 0.731 0.537 0.607 0.608 0.500 0.758
tervals of time. dl-DMD can extract small and large
moving foreground objects, such as a running rabbit
in video (004) and the big moving trucks with illumi-
nation changes in video (002), respectively; addition-
ally, the competitive F-measure values were obtained.
5 CONCLUSIONS
We proposed dl-DMD for accurate foreground extrac-
tion in videos. In dl-DMD, DMD is performed on
coefficient matrices estimated over a dictionary that
is learned on the randomly selected patches from the
video frames. The experiments on synthetic data re-
veals that the use of dictionary with DMD can extract
complex dynamics in time series data more accurately
than standard DMD and cDMD methods. Also, ex-
periments on real video dataset demonstrates that our
proposed method can extract foreground and back-
ground information in videos with comparable per-
formance to other methods.
ACKNOWLEDGEMENTS
This work was supported by JSPS KAKENHI (Grant
Number JP18H03287) and JST CREST (Grant Num-
ber JPMJCR1913).
REFERENCES
Aharon, M., Elad, M., and Bruckstein, A. (2006). rmk-svd:
An algorithm for designing overcomplete dictionaries
for sparse representation. IEEE Transactions on Sig-
nal Processing, 54(11):4311–4322.
Bouwmans, T., Sobral, and Javed, S. (2017). Decompo-
sition into low-rank plus additive matrices for back-
ground/foreground separation. Computer Science Re-
view, 23:1–71.
Cand
`
es, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust
principal component analysis? Journal of the ACM
(JACM), 58(3):11.
De La Torre, F. and Black, M. J. (2003). A framework
for robust subspace learning. International Journal
of Computer Vision, 54(1-3):117–142.
Erichson, N. B., Brunton, S. L., and Kutz, J. N. (2016).
Compressed dynamic mode decomposition for back-
ground modeling. Journal of Real-Time Image Pro-
cessing, pages 1–14.
Goldfarb, D., Ma, S., and Scheinberg, K. (2013). Fast alter-
nating linearization methods for minimizing the sum
of two convex functions. Mathematical Programming,
141(1-2):349–382.
Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., and Ish-
war, P. (2012). Changedetection. net: A new change
detection benchmark dataset. In CVPRW, 2012 IEEE
Computer Society Conference on, pages 1–8. IEEE.
Koopman, B. (1931). Hamiltonian systems and transfor-
mation in Hilbert space. Proceedings of the National
Academy of Sciences USA, 17(5):315–318.
Kutz, J. N. and Fu (2015). Multi-resolution dynamic mode
decomposition for foreground/background separation
and object tracking. In 2015 IEEE (ICCVW), pages
921–929. IEEE.
Oliver, N., Rosario, B., and Pentland, A. (1999). A bayesian
computer vision system for modeling human interac-
tions. In ICVS, pages 255–272. Springer.
Schmid, P. J. (2010). Dynamic mode decomposition of nu-
merical and experimental data. Journal of fluid me-
chanics, 656:5–28.
Sobral, A. and Vacavant, A. (2014). A comprehensive re-
view of background subtraction algorithms evaluated
with synthetic and real videos. Computer Vision and
Image Understanding, 122:4–21.
Takeishi, N., Kawahara, Y., and Yairi, T. (2017). Sparse
non-negative dynamic mode decomposition. In 2017
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
482