since the sets of these pathologies, in this study,
already shows what pathologies can be clustered.
ACKNOWLEDGEMENTS
This work was supported by FCT – Fundação para a
Ciência e Tecnologia within the Projects:
UIDB/04752/2020 and UIDB/5757/2020.
REFERENCES
Barry, W.J., Pützer, M. Saarbrücken Voice Database,
Institute of Phonetics, Univ. of Saarland,
http://www.stimmdatenbank.coli.unisaarland.de/
Cordeiro, H. T., 2016. Reconhecimento de Patologias da
Voz usando Técnicas de Processamento da Fala.
Universidade Nova de Lisboa.
Cordeiro, H., Meneses, C., Fonseca, J., 2015. Continuous
Speech Classification Systems for Voice Pathologies
Identification. In IFIP AICT 450, pp. 217–224.
Fernandes
,
J., Silva, L., Teixeira, F., Guedes
,
V., Santos, J.
& Teixeira, J. P., 2019. Parameters for Vocal Acoustic
Analysis - Cured Database. In Procedia Computer
Science – Elsevier.
Fernandes, J., Teixeira, F., Guedes, V. Junior, A. &
Teixeira, J. P., 2018. Harmonic to Noise Ratio
Measurement - Selection of Window and Length. In
Procedia Computer Science - Elsevier. Volume 138,
Pages 280-285.
Guedes, V., Junior, A., Teixeira, F., Fernandes, J., &
Teixeira, J. P., 2018. Long Short Term Memory on
Chronic Laryngitis Classification. Procedia Computer
Science - Elsevier. Volume 138, Pages 250-257.
Hubert, M., Vandervieren, E., 2007. An Adjusted Boxplot
for Skewed Distributions. In Computational Statistics
& Data Analysis, Vol. 52.
Mann, P. S., 2010. Introductory Statistics, John Wiley &
Sons, Inc. Hoboken, 7th edition.
Panek, D., Skalski, A., Gajda, J., Tadeusiewicz, R., 2015.
Acoustic Analysis Assessment in Speech Pathology
Detection. In Int. J. Appl. Math. Comput, Vol. 25, No.
3.
Shama, K., Krishna, A., Cholayya, N. U., 2006. Study of
Harmonics-to-Noise Ratio and Critical-Band Energy
Spectrum of Speech as Acoustic Indicators of
Laryngeal and Voice Pathology. In EURASIP Journal
on Advances in Signal Processing, Vol. 2007.
Teixeira, F., Fernandes, J., Guedes, V. Junior, A. &
Teixeira, J. P., 2018. Classification of
Control/Pathologic Subjects with Support Vector
Machines. Procedia Computer Science - Elsevier.
Volume 138, Pages 272-279.
Teixeira, J. P., Fernandes, J., Teixeira, F., Fernandes, P.,
2018. Acoustic Analysis of Chronic Laryngitis -
Statistical Analysis of Sustained Speech Parameters. In
Proceedings of the 11th International Joint Conference
on Biomedical Engineering Systems and Technologies,
pp 168-175.
Teixeira, J. P., Fernandes, P. O. & Alves, N. , 2017. “Vocal
Acoustic Analysis – Classification of Dysphonic
Voices with Artificial Neural Networks”, Procedia
Computer Science - Elsevier 121, 19–26.
Teixeira, J. P., Fernandes, P. O., 2014. Jitter, Shimmer and
HNR classification within gender, tones and vowels in
healthy voices. In Procedia Technology - Elsevier,
Volume 16, Pages 1228-1237.
Teixeira, J. P., Gonçalves, A., 2016. Algorithm for jitter and
shimmer measurement in pathologic voices. Procedia
Computer Science - Elsevier 100, pages 271 – 279.
Teixeira, J. P., Oliveira, C., Lopes, C., 2013. Vocal
Acoustic Analysis - Jitter, Shimmer and HNR
Parameters. In Procedia Technology – Elsevier, Vol. 9,
pp 1112-1122.
Zwetsch, I. C., Fagundes, R. D. R., Russomano, T., Scolari,
D., 2006. Processamento Digital de Sinais no
Diagnóstico Diferencial de Doenças Laríngeas
Benignas. In Scientia Medica, Vol. 16, No. 3.