7260, page 72602Q. International Society for Optics
and Photonics.
Histace, A., Bonnefoye, E., Garrido, L., Matuszewski, B. J.,
and Murphy, M. F. (2014). Active contour segmen-
tation based on approximate entropy - application to
cell membrane segmentation in confocal microscopy.
In BIOSIGNALS 2014 - Proceedings of the Interna-
tional Conference on Bio-inspired Systems and Signal
Processing, ESEO, Angers, Loire Valley, France, 3-6
March, 2014, pages 270–277.
Hwang, S., Oh, J., Tavanapong, W., Wong, J., and
De Groen, P. C. (2007). Polyp detection in
colonoscopy video using elliptical shape feature. In
Image Processing, 2007. ICIP 2007. IEEE Interna-
tional Conference on, volume 2, pages II–465. IEEE.
Iwahori, Y., Shinohara, T., Hattori, A., Woodham, R. J.,
Fukui, S., Bhuyan, M. K., and Kasugai, K. (2013).
Automatic polyp detection in endoscope images using
a hessian filter. In proceedings of MVA conference,
pages 21–24.
Kang, J. and Doraiswami, R. (2003). Real-time image
processing system for endoscopic applications. In
CCECE 2003-Canadian Conference on Electrical and
Computer Engineering. Toward a Caring and Hu-
mane Technology (Cat. No. 03CH37436), volume 3,
pages 1469–1472. IEEE.
Karkanis, S. A., Iakovidis, D. K., Maroulis, D. E., Karras,
D. A., and Tzivras, M. (2003). Computer-aided tumor
detection in endoscopic video using color wavelet fea-
tures. IEEE transactions on information technology in
biomedicine, 7(3):141–152.
Nagy, S., Sziová, B., and Pipek, J. (2019). On structural en-
tropy and spatial filling factor analysis of colonoscopy
pictures. Entropy, 21(3):256.
Raynaud, G., Simon-Chane, C., Jacob, P., and Histace, A.
(2019). Active contour segmentation based on his-
tograms and dictionary learning. In proceedings of
VISAPP conference, pages 609–615.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv.
Ribeiro, E., Uhl, A., and Häfner, M. (2016). Colonic
polyp classification with convolutional neural net-
works. In Computer-Based Medical Systems (CBMS),
2016 IEEE 29th International Symposium on, pages
253–258. IEEE.
Sánchez, F. J., Bernal, J., Sánchez-Montes, C., de Miguel,
C. R., and Fernández-Esparrach, G. (2017). Bright
spot regions segmentation and classification for spec-
ular highlights detection in colonoscopy videos. Ma-
chine Vision and Applications, 28(8):917–936.
Ševo, I., Avramovi
´
c, A., Balasingham, I., Elle, O. J., Bergs-
land, J., and Aabakken, L. (2016). Edge density based
automatic detection of inflammation in colonoscopy
videos. Computers in biology and medicine, 72:138–
150.
Silva, J., Histace, A., Romain, O., Dray, X., and Granado,
B. (2014). Toward embedded detection of polyps in
wce images for early diagnosis of colorectal cancer.
International Journal of Computer Assisted Radiology
and Surgery, 9(2):283–293.
Tajbakhsh, N., Gurudu, S. R., and Liang, J. (2014). Au-
tomatic polyp detection using global geometric con-
straints and local intensity variation patterns. In In-
ternational Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 179–187.
Springer.
Zhu, H., Fan, Y., and Liang, Z. (2010). Improved curva-
ture estimation for shape analysis in computer-aided
detection of colonic polyps. In International MICCAI
Workshop on Computational Challenges and Clinical
Opportunities in Virtual Colonoscopy and Abdominal
Imaging, pages 9–14. Springer.
BIOSIGNALS 2020 - 13th International Conference on Bio-inspired Systems and Signal Processing
114