Java, 2Nd Edition. Heaton Research, Inc., 2nd edi-
tion.
Huang, J., Yang, Y., Zhou, K., Zhao, X., Zhou, Q., Zhu, H.,
Yang, Y., Zhang, C., Zhou, Y., and Zhou, W. (2017).
Rapid processing of a global feature in the on visual
pathways of behaving monkeys. Frontiers in Neuro-
science, 11:474.
Jaderberg, M., Simonyan, K., Zisserman, A., and
Kavukcuoglu, K. (2015). Spatial transformer net-
works. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R., editors, Advances
in Neural Information Processing Systems 28, pages
2017–2025. Curran Associates, Inc.
Kanazawa, A., Sharma, A., and Jacobs, D. W. (2014). Lo-
cally scale-invariant convolutional neural networks.
CoRR, abs/1412.5104.
Kauderer-Abrams, E. (2017). Quantifying translation-
invariance in convolutional neural networks. arXiv
preprint arXiv:1801.01450.
Kim, S.-W., Kook, H.-K., Sun, J.-Y., Kang, M.-C., and Ko,
S.-J. (2018). Parallel feature pyramid network for ob-
ject detection. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 234–250.
Kong, T., Sun, F., Tan, C., Liu, H., and Huang, W. (2018).
Deep feature pyramid reconfiguration for object de-
tection. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 169–185.
Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple
layers of features from tiny images. Technical report,
Citeseer.
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Lenc, K. and Vedaldi, A. (2015). Understanding image
representations by measuring their equivariance and
equivalence. CVPR.
Liao, Z. and Carneiro, G. (2015). Competitive multi-scale
convolution. arXiv preprint arXiv:1511.05635.
Lin, T.-Y., Doll
´
ar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2017). Feature pyramid networks
for object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2117–2125.
Ma, W. J. and Pouget, A. (2008). Linking neurons to be-
havior in multisensory perception: A computational
review. Brain research, 1242:4–12.
Park, H. and Lee, K. M. (2016). Look wider to match im-
age patches with convolutional neural networks. IEEE
Signal Processing Letters, 24(12):1788–1792.
Peng, C., Zhang, X., Yu, G., Luo, G., and Sun, J. (2017).
Large kernel matters–improve semantic segmentation
by global convolutional network. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 4353–4361.
Poggio, T. A., Mutch, J., and Isik, L. (2014). Computational
role of eccentricity dependent cortical magnification.
CoRR, abs/1406.1770.
Su, Y., Shan, S., Chen, X., and Gao, W. (2009). Hierar-
chical ensemble of global and local classifiers for face
recognition. IEEE Transactions on image processing,
18(8):1885–1896.
Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
(2017). Inception-v4, inception-resnet and the impact
of residual connections on learning. In Thirty-First
AAAI Conference on Artificial Intelligence.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wo-
jna, Z. (2016). Rethinking the inception architecture
for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2818–2826.
Tononi, G. and Edelman, G. M. (1998). Consciousness and
complexity. science, 282(5395):1846–1851.
Wang, H., Kembhavi, A., Farhadi, A., Yuille, A. L., and
Rastegari, M. (2019). Elastic: Improving cnns with
dynamic scaling policies. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 2258–2267.
Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
mnist: a novel image dataset for benchmarking ma-
chine learning algorithms. Technical report, arXiv.
Xu, Y., Xiao, T., Zhang, J., Yang, K., and Zhang, Z. (2014).
Scale-invariant convolutional neural networks. CoRR,
abs/1411.6369.
Yu, F., Wang, D., Shelhamer, E., and Darrell, T. (2018).
Deep layer aggregation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 2403–2412.
Zagoruyko, S. and Komodakis, N. (2015). Learning to com-
pare image patches via convolutional neural networks.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4353–4361.
Zhang, T., Zeng, Y., and Xu, B. (2016a). Hcnn: A neu-
ral network model for combining local and global fea-
tures towards human-like classification. International
Journal of Pattern Recognition and Artificial Intelli-
gence, 30(01):1655004.
Zhang, W.-H., Chen, A., Rasch, M. J., and Wu, S. (2016b).
Decentralized multisensory information integration in
neural systems. Journal of Neuroscience, 36(2):532–
547.
Zhao, Q., Sheng, T., Wang, Y., Tang, Z., Chen, Y., Cai, L.,
and Ling, H. (2019). M2det: A single-shot object de-
tector based on multi-level feature pyramid network.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 9259–9266.
Zheng, L., Yang, Y., and Tian, Q. (2017). Sift meets cnn:
A decade survey of instance retrieval. IEEE trans-
actions on pattern analysis and machine intelligence,
40(5):1224–1244.
Zheng, Y., Huang, J., Chen, T., Ou, Y., and Zhou, W. (2018).
Processing global and local features in convolutional
neural network (cnn) and primate visual systems. In
Mobile Multimedia/Image Processing, Security, and
Applications 2018, volume 10668, page 1066809. In-
ternational Society for Optics and Photonics.
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
498