cading, semi-circular discs. In Proc. InfoVis, pages
9–11. IEEE.
Auber, D., Huet, C., Lambert, A., Renoust, B., Sallaberry, A.,
and Saulnier, A. (2013). Gospermap: Using a gosper
curve for laying out hierarchical data. Transactions on
Visualization and Computer Graphics, 19(11):1820–
1832. IEEE.
Balzer, M. and Deussen, O. (2005). Voronoi treemaps. In
Proc. InfoVis, pages 49–56. IEEE.
Balzer, M., Deussen, O., and Lewerentz, C. (2005). Voronoi
treemaps for the visualization of software metrics. In
Proc. SoftVis, pages 165–172. ACM.
Baudel, T. and Broeksema, B. (2012). Capturing the design
space of sequential space-filling layouts. Transactions
on Visualization and Computer Graphics, 18(12):2593–
2602. IEEE.
Beck, F., Burch, M., Munz, T., Di Silvestro, L., and
Weiskopf, D. (2014). Generalized pythagoras trees
for visualizing hierarchies. In Proc. IVAPP, pages
17–28. ScitePress.
Bederson, B. B., Shneiderman, B., and Wattenberg, M.
(2002). Ordered and quantum treemaps: Making effec-
tive use of 2d space to display hierarchies. Transactions
on Graphics, 21(4):833–854. ACM.
Carpendale, M. S. T. (2003). Considering visual variables as
a basis for information visualization. Technical report,
University of Calgary, Canada. Nr. 2001-693-14.
Chazard, E., Puech, P., Gregoire, M., and Beuscart, R. (2006).
Using treemaps to represent medical data. Studies in
Health Technology and Informatics, 124:522–527.
Collin, P., Otjacques, B., Gobert, X., Noirhomme, M., and
Feltz, F. (2007). Visualizing the activity of a web-based
collaborative platform. In Proc. iV, pages 251–256.
IEEE.
Dang, T. and Forbes, A. (2017). CactusTree: A tree draw-
ing approach for hierarchical edge bundling. In Proc.
PacificVis, pages 210–214. IEEE.
de Berg, M., Speckmann, B., and van der Weele, V. (2011).
Treemaps with bounded aspect ratio. In Proc. ISAAC,
pages 260–270. Springer.
Friendly, M. (2002). A brief history of the mosaic display.
Journal of Computational and Graphical Statistics,
11(1):89–107. Taylor & Francis.
G
¨
ortler, J., Schulz, C., Weiskopf, D., and Deussen, O.
(2017). Bubble treemaps for uncertainty visualization.
Transactions on Visualization and Computer Graphics,
24(1):719–728. IEEE.
Gregg, B. (2016). The flame graph. Communications,
59(6):48–57. ACM.
Hahn, S. and D
¨
ollner, J. (2017). Hybrid-treemap layouting.
In Proc. EuroVis – Short Papers, pages 79–83. EG.
Hahn, S., Tr
¨
umper, J., Moritz, D., and D
¨
ollner, J. (2014).
Visualization of varying hierarchies by stable layout
of voronoi treemaps. In Proc. IVAPP, pages 50–58.
SciTePress.
Hawes, N., Marshall, S., and Anslow, C. (2015). Codesur-
veyor: Mapping large-scale software to aid in code
comprehension. In Proc. VISSOFT, pages 96–105.
IEEE.
Hlawatsch, M., Burch, M., and Weiskopf, D. (2014). Bubble
hierarchies. In Proc. CAe, pages 77–80. ACM.
Holten, D. (2006). Hierarchical edge bundles: Visual-
ization of adjacency relations in hierarchical data.
Transactions on Visualization and Computer Graphics,
12(5):741–748. IEEE.
Itoh, T., Kajinaga, Y., Yamaguchi, Y., and Ikehata, Y. (2004).
Hierarchical data visualization using a fast rectangle-
packing algorithm. Transactions on Visualization and
Computer Graphics, 10:302–313. IEEE.
Jern, M., Rogstadius, J., and
˚
Astr
¨
om, T. (2009). Treemaps
and choropleth maps applied to regional hierarchical
statistical data. In Proc. iV, pages 403–410. IEEE.
Johnson, B. S. (1993). Treemaps: Visualizing Hierarchi-
cal and Categorical Data. PhD thesis, University of
Maryland. UMI Order No. GAX94-25057.
Johnson, B. S. and Shneiderman, B. (1991). Tree-maps:
A space-filling approach to the visualization of hier-
archical information structures. In Proc. VIS, pages
284–291. IEEE.
Johnston, J. B. (1969). Structure of multiple activity algo-
rithms. In Proc. SOSP, pages 80–82. ACM.
Kleiner, B. and Hartigan, J. A. (1981). Representing points
in many dimensions by trees and castles. Journal of the
American Statistical Association, 76(374):260–269.
Kruskal, J. B. and Landwehr, J. M. (1983). Icicle plots: Bet-
ter displays for hierarchical clustering. The American
Statistician, 37(2):162–168. Taylor & Francis.
Kubota, H., Nishida, T., and Sumi, Y. (2006). Visualization
of contents archive by contour map representation. In
Proc. Annual Conference of the Japanese Society for
Artificial Intelligence, pages 19–32. Springer.
Kuhn, A., Erni, D., Loretan, P., and Nierstrasz, O. (2010).
Software cartography: thematic software visualiza-
tion with consistent layout. Journal of Software
Maintenance and Evolution: Research and Practice,
22(3):191–210. Wiley.
Limberger, D., Scheibel, W., D
¨
ollner, J., and Trapp, M.
(2019). Advanced visual metaphors and techniques
for software maps. In Proc. VINCI, pages 1–8. ACM.
Limberger, D., Scheibel, W., Trapp, M., and D
¨
ollner, J.
(2017). Mixed-projection treemaps: A novel approach
mixing 2d and 2.5d treemaps. In Proc. iV, pages 164–
169. IEEE.
L
¨
u, H. and Fogarty, J. (2008). Cascaded treemaps: Examin-
ing the visibility and stability of structure in treemaps.
In Proc. Graphics Interface, pages 259–266. Canadian
Information Processing Society.
McNabb, L. and Laramee, R. S. (2017). Survey of Surveys
(SoS) - mapping the landscape of survey papers in
information visualization. Computer Graphics Forum,
36(3):589–617. EG.
Merino, L., Ghafari, M., Anslow, C., and Nierstrasz, O.
(2018). A systematic literature review of software visu-
alization evaluation. Journal of Systems and Software,
144:165–180. Elsevier.
Munz, T., Burch, M., van Benthem, T., Poels, Y., Beck,
F., and Weiskopf, D. (2019). Overlap-free draw-
ing of generalized pythagoras trees for hierarchy vi-
sualization. arXiv Computing Research Repository,
abs/1907.12845.
A Taxonomy of Treemap Visualization Techniques
279