under the Thematic Excellence Programme funding
scheme.
REFERENCES
(2019). LGSVL Simulator.
https://www.lgsvlsimulator.com/.
Barath, D., Molnar, J., and Hajder, L. (2015). Optimal Sur-
face Normal from Affine Transformation. In VISAPP
2015, pages 305–316.
Barath, D., Molnar, J., and Hajder, L. (2016). Novel meth-
ods for estimating surface normals from affine trans-
formations. In Computer Vision, Imaging and Com-
puter Graphics Theory and Applications, pages 316–
337. Springer International Publishing.
Barath, D., Toth, T., and Hajder, L. (2017). A minimal so-
lution for two-view focal-length estimation using two
affine correspondences. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages
2557–2565.
Bentolila, J. and Francos, J. M. (2014). Conic epipolar con-
straints from affine correspondences. Computer Vision
and Image Understanding, 122:105–114.
Blanco, J.-L., Moreno, F.-A., and Gonzalez-Jimenez, J.
(2014). The m
´
alaga urban dataset: High-rate stereo
and lidars in a realistic urban scenario. International
Journal of Robotics Research, 33(2):207–214.
Fischler, M. and Bolles, R. (1981). RANdom SAmpling
Consensus: a paradigm for model fitting with appli-
cation to image analysis and automated cartography.
Commun. Assoc. Comp. Mach., 24:358–367.
Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready
for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern
Recognition (CVPR).
Hajder, L. and Eichhardt, I. (2017). Computer vision
meets geometric modeling: Multi-view reconstruction
of surface points and normals using affine correspon-
dences. In 2017 IEEE International Conference on
Computer Vision Workshops, ICCV Workshops 2017,
Venice, Italy, October 22-29, 2017, pages 2427–2435.
Hartley, R. I. (1995). In defence of the 8-point algorithm.
International Conference on Computer Vision, pages
1064–1070.
Hartley, R. I. and Sturm, P. (1997). Triangulation. Computer
Vision and Image Understanding: CVIU, 68(2):146–
157.
Hartley, R. I. and Zisserman, A. (2003). Multiple View Ge-
ometry in Computer Vision. Cambridge University
Press.
K
¨
oser, K. (2009). Geometric Estimation with Local Affine
Frames and Free-form Surfaces. Shaker.
K
¨
oser, K. and Koch, R. (2008). Differential spatial resection
- pose estimation using a single local image feature. In
ECCV, pages 312–325.
Mikolajczyk, K. and Schmid, C. (2002). An affine invariant
interest point detector. In Computer Vision - ECCV
2002, 7th European Conference on Computer Vision,
Copenhagen, Denmark, May 28-31, 2002, Proceed-
ings, Part (I), pages 128–142.
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., and Gool, L. V.
(2005). A comparison of affine region detectors. Inter-
national Journal of Computer Vision, 65(1-2):43–72.
Morel, J. and Yu, G. (2009). ASIFT: A new framework
for fully affine invariant image comparison. SIAM J.
Imaging Sciences, 2(2):438–469.
Raposo, C. and Barreto, J. P. (2016). Theory and prac-
tice of structure-from-motion using affine correspon-
dences. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pages 5470–5478.
von Gioi, R. G., Jakubowicz, J., Morel, J., and Randall, G.
(2012). LSD: a line segment detector. IPOL Journal,
2:35–55.
Yin, Z., Darrell, T., and Yu, F. (2019). Hierarchical discrete
distribution decomposition for match density estima-
tion. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).
Yu, G. and Morel, J. (2011). ASIFT: an algorithm for fully
affine invariant comparison. IPOL Journal, 1:11–38.
Zhang, L. and Koch, R. (2013). An efficient and robust line
segment matching approach based on LBD descriptor
and pairwise geometric consistency. J. Visual Commu-
nication and Image Representation, 24(7):794–805.
Zhang, Z. (1998). Determining the epipolar geometry and
its uncertainty: A review. International Journal of
Computer Vision, 27(2):161–195.
Zhang, Z. (2000). A flexible new technique for camera cal-
ibration. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(11):1330–1334.
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
826