Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
WardeFarley, D., Ozair, S., Courville A., and Bengio.
Y., 2014. Generative adversarial nets. In Advances in
Neural Information Processing Systems, pp. 2672–
2680.
Griffin D., and Lim, J., 1984. Signal Estimation from
Modified Short-Time Fourier Transform, In IEEE
Transactions on Acoustics, Speech and Signal
Processing. vol. 32, , pp. 236–243.
Google, “Cloud speech-to-text,”
http://cloud.google.com/speech-to-text/, 2018.
Hawley, Mark S., et al., 2006. Development of a voice-
input voice-output communication aid (VIVOCA) for
people with severe dysarthria. In International
Conference on Computers for Handicapped Persons.
Springer, Berlin, Heidelberg,
Hironori, D., Nakamura, K., Tomoki, T., Saruwatari, H.,
Shikano, K. 2010. Esophageal speech enhancement
based on statistical voice conversion with gaussian
mixture models. IEICE Trans. Inf. Syst. 93 (9), 2472–
2482.
Hosom, J-P., et al., 2003. Intelligibility of modifications to
dysarthric speech. In 2003 IEEE International
Conference on Acoustics, Speech, and Signal
Processing, 2003. Proceedings. (ICASSP'03). Vol. 1.
IEEE.
Isola, P., Zhu., Efros., 2017. Image-to-Image Translation
with Conditional Adversarial Networks," In
Proceedings of CVPR.
Johnson J., A. Alahi, and L. Fei-Fei., 2016. Perceptual
losses for real-time style transfer and super-resolution.
In Proceedings of ECCV.
Kain., Alexander B., et al., 2007. Improving the
intelligibility of dysarthric speech. In Speech
communication 49.9. pp.743-759.
Kain, Van Santen, A. Kain, J. Van Santen., 2009. Using
speech transformation to increase speech intelligibility
for the hearing-and speaking-impaired. In Proceedings
of the ICASSP.
Kalal, Z., K. Mikolajczyk, Matas J., Forward backward
error: Automatic detection of tracking failures. In
ICPR, 2010.
Kim, S., et al., 2013. VUI development for Korean people
with dysarthria." Journal of Assistive Technologies 7.3.
pp. 188-200.
Takashima, A., Takiguchi, A., Takashima, T. Takiguchi,
Ariki, Y., 2013. Individuality-preserving voice
conversion for articulation disorders based on non-
negative matrix factorization. In Proceedings of the
ICASSP (2013).
Tanaka, T., Toda, G., Neubig, S., Sakti, S., Nakamura A.,
2013. Hybrid approach to electrolaryngeal speech
enhancement based on spectral subtraction and
statistical voice conversion. In Proceedings of the
INTERSPEECH (2013)
Toda, N., Shikano, M., Nakagiri, K., 2012. Statistical voice
conversion techniques for body-conducted unvoiced
speech enhancement. In IEEE Trans. Audio Speech
Lang. Process., 20 (9), pp. 2505-2517
Toda, N., Saruwatari S., Shikano, et al., 2014. Alaryngeal
speech enhancement based on one-to-many eigenvoice
conversion In IEEE/ACM IEEE Trans. Audio Speech
Lang. Process
., 22 (1) (2014), pp. 172-183
Nakamura, T., Toda, H., Saruwatari, K., Shikano., 2006. A
speech communication aid system for total
laryngectomies using voice conversion of body
transmitted artificial speech. In J. Acoust. Soc. Am., 120
(5) (2006), p. 3351
Nakamura, T., Toda, H., Saruwatari, K., Shikano., 2012.
Speaking-aid systems using GMM -based voice
conversion for electrolaryngeal speech In Speech
Commun., 54 (1), pp. 134-146
Shriberg, L. D., and Kwiatkowski J., 1982. Phonological
disorders I: A diagnostic classification system. In
Journal of Speech and Hearing Disorders., 47.3, pp.
226-241.
Yamagishi, C., Veaux, S., King, S. 2012, Renals Speech
synthesis technologies for individuals with vocal
disabilities: voice banking and reconstruction. In
Acoust. Sci. Technol., 33 (1), pp. 1-5.
Yang, S. H., and Chung, M., 2019. Self-imitating Feedback
Generation Using GAN for Computer-Assisted
Pronunciation Training. In Proceedings of Interspeech
2019., pp. 1881-1885.
Zhu, J. Park, T., Isola, Efros A., 2017. Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial
Networks," In Proceedings of ICCV.