vices for biomedical applications. Computers and
Mathematics with Applications, 64(3):278–288.
Doddi, S. and Bagchi, P. (2009). Three-dimensional compu-
tational modeling of multiple deformable cells flow-
ing in microvessels. Phys. Rev. E, 79(4):046318.
Dunweg, B. and Ladd, A. J. C. (2009). Lattice-Boltzmann
simulations of soft matter systems. Advances in Poly-
mer Science, 221:89–166.
Dunweg, B., Schiller, U., and Ladd, A. J. C. (2007). Sta-
tistical mechanics of the fluctuating lattice boltzmann
equation. Physical Review E??, 76:036704.
Dupin, M. M., Halliday, I., Care, C. M., and Alboul, L.
(2007). Modeling the flow of dense suspensions of de-
formable particles in three dimensions. Physical Re-
view E, Statistical, nonlinear, and soft matter physics,
75:066707.
Fedosov, D. A., Caswell, B., and Karniadakis, G. E. (2010).
A multiscale red blood cell model with accurate me-
chanics, rheology and dynamics. Biophysical Journal,
98(10):2215–2225.
Feng, Z. G. and Michaelides, E. E. (2001). Drag coefficients
of viscous spheres at intermediate and high reynolds
numbers. Journal of Fluids Engineering, 123:841–
849.
Guo, Z. and Zhao, T. (2005). Lattice boltzmann simulation
of natural convection with temperature-dependent vis-
cosity in a porous cavity. Progress in Computational
Fluid Dynamics, 5(1):110–117.
Gusenbauer, M., T
´
othov
´
a, R., Mazza, G., Brandl, M.,
Schrefl, T., Jan
ˇ
cigov
´
a, I., and Cimr
´
ak, I. (2018).
Cell damage index as computational indicator for
blood cell activation and damage. Artificial Organs,
42(7):746–755.
Janacek, J., Kohani, M., Koniorczyk, M., and Marton, P.
(2017). Optimization of periodic crew schedules with
application of column generation method. Trans-
portation Research Part C: Emerging Technologies,
83:165 – 178.
Jan
ˇ
cigov
´
a, I. and Cimr
´
ak, I. (2016). Non-uniform force al-
location for area preservation in spring network mod-
els. International Journal for Numerical Methods in
Biomedical Engineering, 32(10):e02757–n/a.
Kleineberg, K.-K., Buzna, L., Papadopoulos, F., Bogu
˜
n
´
a,
M., and Serrano, M. A. (2017). Geometric correla-
tions mitigate the extreme vulnerability of multiplex
networks against targeted attacks. Phys. Rev. Lett.,
118:218301.
Krafczyk, M. and Toelke, J. (2003). Large-edd simulations
with multiple-relaxation time lbe model. International
Journal of Modern Physics B, 17(1):33–39.
Krueger, T. (2012). Computer Simulation Study of Collec-
tive Phenomena in Dense Suspensions of Red Blood
Cells under Shear. PhD thesis, Max-Planck Institut.
Lallemand, P., d’Humieres, D., Luo, L., and Rubinstein,
R. (2003). Theory of the lattice boltzmann method:
three-dimensional model for linear viscoelastic fluids.
Phys. Rev. E, 67:021203.
Loriot, S., Rouxel-Labb
´
e, M., Tournois, J., and Yaz, I. O.
(2019). Polygon mesh processing. In CGAL User
and Reference Manual. CGAL Editorial Board, 5.0
edition.
Meng, X. and Guo, Z. (2015). Multiple-relaxation-time
lattice boltzmann model for incompressible miscible
flow with large viscosity ratio and high p
´
eclet num-
ber. PHYSICAL REVIEW E, 92:043305.
Po
ˇ
stek, T. (2019). Fluid dynamics model of cells with vari-
able inner and outer fluid viscosity. In Mathematics in
science and technologies [print] : proceedings of the
MIST conference 2019, pages 65–72.
Premnath, K. and Abraham, J. (2007). Three-dimensional
multi-relaxation time (mrt) lattice-boltzmann mod-
els for multiphase flow. Journal of Computational
Physics, 224:539–559.
Rakotomalala, N., Salin, D., and Watzky, P. (1996). Simu-
lations of viscous flows of complex fluids with a bhat-
nagar, gross, and krook lattice gas. Physics of Fluids,
8:3200–3202.
Reichel, F., Mauer, J., Nawaz, A. A., Gompper, G., Guck,
J., and Fedosov, D. A. (2019). High-throughput
microfluidic characterization of erythrocyte shapes
and mechanical variability. Biophysical Journal,
117(1):14 – 24.
Schiller, U. D., Kr
¨
uger, T., and Henrich, O. (2018). Meso-
scopic modelling and simulation of soft matter. Soft
Matter, 14:9–26.
Wang, C. and Ho, J. (2011). A lattice boltzmann approach
for the non-newtonian effect in the blood flow. Com-
puters and Mathematics with Applications, 62:75–86.
Weik, F., Weeber, R., Szuttor, K., Breitsprecher, K.,
de Graaf, J., Kuron, M., Landsgesell, J., Menke, H.,
Sean, D., and Holm, C. (2019). Espresso 4.0 – an
extensible software package for simulating soft mat-
ter systems. The European Physical Journal Special
Topics, 227(14):1789–1816.
Detection of Lattice-points inside Triangular Mesh for Variable-viscosity Model of Red Blood Cells
217